en-(-) (=metals

en-(•) (=metals

Table of	Contents
DICCI AIMED	

DISCLAIMER	4
LIMITED PRODUCT WARRANTY	5
MISSION STATEMENT	ε
CONTACT INFORMATION	7
Canada Locations - Encore Metals Limited	7
PREFACE	8
SECTION 1. PRODUCTS	9
Products Overview	9
Alloy Steels	11
3312	11
4130	13
4140 Plate	15
4140 TG&P	16
4140/ 4142	17
4140, 4145	20
4145 Drill Collar Bars	23
4150 Calcium Treated	25
4330+V	26
4340	27
8620	30
EN30B	31
E52100	33
Aluminum Extrusions	34
6061	34
Bar Data Table	35
Bronze Cast	36
SAE660 Bearing	36
Aluminum Bronze Alloy 954	37
Carbon Steels	38
1018	38
1018 Cold Finished	39
1040-1045	41

en-(•) (=metals

1045 TG&P	42
1045 Chrome Plated Shafting	44
1045 Induction Hardened	45
1144	46
A105, A350 - LF2 DUAL	47
C12L14	49
Cast Iron	50
65-45-12 Ductile Iron	50
G2 - Highly Pearlitic Gray Iron	52
80-55-06 Partially Pearlite Ductile Iron	53
100-70-02 Pearlitic Ductile Iron	54
Specialty	56
4140 Mechanical Tubing	56
Stainless Steel Ornamental Tubing	57
Staballoy AG17	58
Datalloy 2	60
Nickel Alloys	68
Tool Steels	82
Stainless Steel	90
T-303	90
T-304, T-304H, T-304L	92
T-310, T-310S	95
T-316, T-316L, T-316N	96
T-317, T-317L	100
T-410, T-410S	103
T-416	106
T-316 Pump Shaft Quality (PSQ)	108
T-416 Pump Shaft Quality (PSQ)	109
17-4PH, T-630	110
2304 Duplex	113
2205 Duplex	119
SECTION 2. TECHNICAL DATA & TERMS	124
Tolerances	174

en-(•)(=metals

Hot Rolled Carbon and Alloy Bars	124
Cold Finished Carbon Bars	126
Cold Finished Alloy Bars	128
Machining Allowance	131
Theoretical Weights	133
Chemical Composition	177
Conversion	202
Glossary of Terms	217
SECTION 3. SERVICES	257
Services Overview	257
Saw Cutting	257
Plasma Arc Cutting	257
Trepanning	257
Plate Saw	257
Delivery Services	257
Packaging	257
OLIALITY ASSLIBANCE	258

DISCLAIMER

This Product Manual is to be used for reference only. To the best of our knowledge the information contained in this book is accurate as indicated in the Limited Product Warranty section. Encore Metals assumes no responsibility for errors in, misinterpretation of, the information in this book or in its use.

LIMITED PRODUCT WARRANTY

Encore Metals is a wholesaler of goods, and only warrants that products sold will conform to the express specifications referenced on applicable quotations, invoices, or acknowledgements. The information and data in this manual has been compiled from various independent sources and the purchaser shall be solely responsible for determining the adequacy of the product for any and all uses to which the purchaser should apply the product.

Encore Metals makes no other warranty of any kind, express or implied, including no warranty of merchantability, fitness or particular purpose, usage or trade to any person or entity regarding the products or services covered hereby and forbids the purchaser to represent otherwise to anyone with which it deals.

In the case that any shipment of product proves unsatisfactory, it is understood and agreed that the purchaser will immediately discontinue its use of such product so that the possible loss or damage to either party shall be prevented or minimized.

The purchaser shall give immediate notification to Encore Metals upon discovery of any alleged defect in the product and make the product available for inspection and testing by Encore Metals. On receipt of notification Encore Metals shall determine whether the product supplied was defective, whether the alleged defect was caused by the purchaser's improper installation, processing, or maintenance, or for any other reason. If Encore Metals determines that a defect existed in the product as supplied, the purchaser's sole and exclusive remedy for defective product or service shall be, at Encore Metal's sole and absolute discretion, repair or replacement of the product, or refund of the purchase price. Provided however, no product shall be deemed defective if the alleged defect is discoverable only by inspections means more stringent than those requested by the purchaser in connection with the placing of its order. No action arising out of the transaction under this agreement may be brought by the purchaser more than one year after the cause of action has occurred.

Encore Metals shall not be liable under any circumstances, including, but not limited to, any claim for breach of warranty (express or implied), tort (including negligence) or strict liability, for any actual, incidental, contingent special or consequential damages howsoever caused but not limited to, no liability for loss of profits or revenue, loss of use of products, services or other items to be furnished to the purchaser, cost of capital, cost of substitute equipment, additional costs incurred by the purchaser at its plant or in the field (whether by way of correction or otherwise) or claims of the purchaser's customers or other third party for damages.

MISSION STATEMENT

Encore Metals will provide superior service and the highest quality products to our customers while maintaining a safe work environment for all employees, contractors, and visitors. Our goal is to ensure long term sustainable growth and provide a meaningful return on the business for our stakeholders.

CONTACT INFORMATION

Canada Locations - Encore Metals Limited

Calgary

7805 - 51st Street S.E. Calgary, AB T2C 2Z3 t 800-661-4140 p 403-236-1418 f 403-236-0844

<u>sales.calgary@encoremetals.com</u>

Vancouver

7470 Vantage Way Delta, BC V4G 1H1 t 800-940-0439 p 604-940-0139 f 604-940-0462

sales.vancouver@encoremetals.com

Corporate Head Office

Reliance Metals Canada Limited 6925 - 8th Street Edmonton, AB T6P 1T9

www.encoremetals.com

Edmonton

9810 - 39th Avenue Edmonton, AB T6E 0A1 t 800-661-5621 p 780-436-6660 f 780-435-5976 sales.edmonton@encoremetals.com

Winnipeg

333 DeBaets Street Winnipeg, MN R2J 3V6 t 800-665-9835 p 204-663-1450 f 204-663-1456

sales.winnipeg@encoremetals.com

PREFACE

We are specialist suppliers of high grade steel and metal products including carbon and alloy machinery steels; and extensive range of stainless steels including duplex grades and nickel-based corrosion resistant alloys: iron bar products; forgings; castings; aluminum extrusions; tool steels and bronze products.

Processing services provided include bar sawing, trepanning, stainless plate profiling, and plate sawing.

Our suppliers are all mills of high repute with facilities which include VIM, ESR, and VAR equipment and employ the latest steelmaking technology. As a result, our products are backed by the most advanced metallurgical and research facilities available.

Mill Test Certificates are available upon request as well as a copy of our Quality Assurance Manual which conforms to the requirements of ISO 9001.

PRODUCTS AND SERVICES

SECTION 1. PRODUCTS

Products Overview

Alloy	Alloy Steel bars (Hot Rolled) are stocked from 3/8" to 26 ½" diameter.	 3312 Annealed Round 4130 Heat Treated Rounds, API 6A 4140 Annealed Rounds 4140 Annealed Hexagons, Squares, Flats 4140 HTSR Rounds 4140 Plate 4140 Rc 22 max Rounds 4140 Cold Finished Steel Chrome Plated Shafting & HTSR Precision Ground & Cold Drawn 4145H Mod HTSR 4150 Calcium Treated HTSR Rounds 4330+V Modified, HTSR 4340 Annealed Rounds, CQ and AQ, squares & flats 4340 HTSR Rounds, CQ and AQ EN30B Quench & Tempered Rounds, Annealed Rounds 8620 Hot Rolled Rounds, and cold finished 52100
Aluminum		 6061 T6 Rounds
Bronze Cast		 SAE 660 Bearing Bronze (C93200, ASTM B505) Alloy 954 Aluminum Bronze (C95400, ASTM B505)
Carbon	Carbon Steel Bars (Hot Rolled) are stocked from 1" to 24" diameter. Cold Finished Steel Bars are stocked from 1/8" to 8" diameter.	 1018 Rounds 1040/ 1045 Rounds A105/A350-LF2 1018 Cold Finished Steel Rounds, Squares, Flats 12L14 Cold Finished Steel Rounds, Hexagons 1045 Cold Finished Steel Precision Ground Shafting 1045 Cold Finished Steel Chrome Plated Shafting (Imperial & Metric) 1045 Cold Finished Steel Induction Hardened, Chrome Plated Shafting (Imperial & Metric 1144 Cold Finished Steel CD Hi-Strength
Cast Iron		 Continuous Cast Iron Bar – Ductile 65-45-12 Continuous Cast Iron Bar – Pearlitic Gray Iron - G2 Continuous Cast Iron Bar – 80-55-06

en-(•)(=metals

Specialty

- Ornamental
Stainless Steel
Tubing are stocked
from 1/2" OD x
0.049" wall to 3" OD
x 0.065" wall and
3/4" square x 0.065"
wall to 4" square x
0.025" wall.

Stainless Steel

- Bars are stocked from 1/8" diameter to 12" diameter.
- Sheets are stocked from 26 GA to 10 GA. Maximum width 60".
- Plates are stocked from 3/16" to 3".

- Continuous Cast Iron Bar 100-70-02
- 4140 CD and Hot Finished Seamless Mechanical Tubing, L80 & P100
- Stainless Steel Ornamental Tubing
- Non-Magnetic Drilling Components, Staballoy AG 17TM
- Enhanced Corrosion Resistance Non-Magnetic Steel, Datalloy 2TM
- Nickel/ Cobalt Alloys 400, 500
- Nickel/ Cobalt Corrosion Resistant Alloys, C-276, C-22
- Tool Steels Drilling/Mining
- T303 CD Rounds, Hexagons
- T304/304L Rounds
- T304 HRAP Flats, Slit Edge and Mill Edge
- T304 CD/HRAP Hexagons
- T304 HRAP Angles
- T304/304L 2B and #4 Finish Sheet/Coil
- T304/304L HRAP Sheet/Coil
- T304/304L HRAP Plate
- 309S Plate
- T310/T310S Plate
- T316/316L Rounds
- T316L CG Rounds
- T316L HRAP Angles
- T316/316L PSQ Rounds
- T316 HRAP Flats, Slit Edge and Mill Edge
- T316 CD/HRAP Hexagons, Squares
- T316/316L 2B Finish Sheet/Coil
- T316/316L Plate, HRAP
- T317L Plate, HRAP
- T410 HT CG/RT Rounds & NACE MR-01-75
- T410 CG Rounds
- T416 PSQ Rounds
- T630/17-4PH Condition "A" Rounds
- T630/17-4PH H1150 (NACE) Rounds
- 15**-**5PH
- Duplex 2205 (UNS S31803) Rounds
- XM-19
- 13% Chrome
- 9Cr-1Mo
- Alloy 20Cb3
- Duplex 2304 Plate (UNS S32304)
- Duplex 2205 Plate (UNS S31803/S32205)
- 904L
- 1925 HMo Plate (6% Molybdenum)

Alloy Steels

Alloy 3312

Alloy AISI/SAE 3312	- a 3	½% Nic	kel-Chr	omium	Case H	ardenir	ng Alloy	Steel
Typical Analysis		С	Mn	Р	S	Si	Ni	Cr
		.11	.47	.010	.002	.27	3.33	1.47
Characteristics	requested reques	uiring hi r and ab er of 17(ferred gr ditions v be used ny applic	gh core to the 0,000 ps rade for with exceed in the cations replied in	strength widely u i (1172 h carburiz ellent lo heat tre requiring	, toughr used AISI I/mm2) red part w-tempe ated, no extra si	ness and l 8620. (are atta s in seve erature on-carbu trength	y-duty a I fatigue Core stre ainable. ere oper. properti urized co and toug n and ha	resistarengths in the lating less. 331 andition ghness.
Typical Applications							ston pins c molds,	
Typical Heat Treatment	- Ann - Norn - Hard oil d 200 - Case 900	- Commo - Finish ealing - 840°C malizing - 900°C dened & quench o ° / 650°0 e Hardei	925°C B Furnace Air cool Tempel Tempel Caccord ning - sii C, cool t	red (Unc to 840°/ ling to pi ngle refi	arburize 870°C a ropertie	and air o s requir atment.	at to 815 quench, ed. After ca 300°C, o	then te
Mechanical Properties	TenYielElorRedHare	sile Stre - ₂ Tensil d Streng - ₂ Yield ngation -	ength - 1 Le Streng gth - 80, Strength - 24% of Area - HB 212	n - 552 N	osi N/mm			

Alloy AISI/SAE 3312	Mechanical Properties - (Hardened & Tempered)	UNCARBURIZED	
Size - inches	1" Dia	4" Dia	
Tensile Strength, psi	136,000	131,500	
Tensile Strength, N/mm²	938	907	
Yield Strength, psi	117,500	108,000	
Yield Strength, N/mm ²	810	745	
Elongation (%)	19	17	
Reduction of Area (%)	63	57	
Izod Ft./Lbs.	83	68	
Izod Joules	113	92	
HB of Core	293	285	

Alloy AISI/SAE 3312	Mechanical Properties - CARBURIZED - Single refining (Hardened & Tempered)							
Size - inches	1" Dia	4" Dia						
Tensile Strength, psi	173,000	152,000						
Tensile Strength, N/mm ²	1,193	1,048						
Yield Strength, psi	132,000	109,000						
Yield Strength, N/mm ²	910	752						
Elongation (%)	20	23						
Reduction of Area (%)	60	63						
Izod Ft./Lbs.	60	63						
Izod Joules	81	89						
HB of Core	341	311						
Hardness of Case HRC	62	60						

Alloy 4130

Alloy AISI/SAE 4130 (UNS G 41300)	- a "3	0" Carl	bon Chi	romium	-Molybo	denum .	Alloy St	eel
Typical Analysis		С	Mn	Р	S	Si	Cr	Мо
		.30	.50	.015	.010	.25	.90	.20
Characteristics	Spec - Bars impl - Stoc hard	c.6A. are hea act-test ks also	at treate ted to C conform	ed to Des lassifica to NACI	signatior tion K. E Standa	n 75K ar	regulati nd are Ch I- 75 with machin	narpy V
Typical Applications	– Flan	ges, we	llhead c	ompone	nts, tool	l joints,	etc.	
Typical Heat Treatment	– Ann – Norr – Norr – Harc 885	Comme Finish bealing 830°C/ malizing 870°C/ dened &	950°C 855°C 930°C Tempe		wly in fur iir °C/ 870	°C Wate	er quencl to prope	
Mechanical Properties	TensYielsElonsRed	d Streng gation - uction o	ngth - 8 th - 80, 28% f Area -	·				

en-(•) (=metals

Alloy AISI/SAE 4130 (UNS G 41300)	Mechanical Properties - Normalized, Hardened & Tempered at 1150°F min - Typical, API-6A Designation 75K, Classification K								
Size - inches	4" Dia	7" Dia.	9 1/2" Dia	15 1/4" Dia					
Size - mm	101.6	177.8	241.3	387.4					
Tensile Strength, psi	105,500	107,000	104,000	103,000					
Tensile Strength, N/mm²	727	737	717	710					
Yield Strength, psi	78,480	80,000	77,400	78,000					
Yield Strength, N/mm ²	541	551	534	538					
Elongation (%)	26.8	25.1	28.2	24					
Reduction of Area (%)	66.5	64.0	68.3	71.0					
НВ	223	228	225	220					
CVN @-75°F	45/50/47	35/39/42	36/40/43	40/38/42					

Alloy 4140 Plate

Alloy AISI 4140 PLATE									
Typical Analysis		С	Mn	Р	S	Sl	Cr	Мо	
		.40	.85	.020	.025	.25	.90	.20	
Characteristics	 The combined effect of the chromium and molybdenum contents ensures excellent hardenability with uniform properties. In the heat treated condition, plate exhibits strong abrasion and wear resistance as well as good impact and fatigue properties 								
Typical Applications	 Recommended for use in high stress, abrasion/wear resistant applications such as gears, oil tools and machine tool components 								
Condition	 As rolled surface finish, annealed alloy steel plate 								
Plate Dimensions	– Ava 72"	lable in	gauge/	width co	mbinatio	ons fron	n 1/4" x	96" to 4 1	1/4" x

Alloy Cold Finished 4140 TG&P

Alloy Cold Finished AISI 4140 PRECISION GROUND SHAFTING (UNS G 41400)	- Turned, ground and polished shafting - Straightness tolerance of 1 1/16" max in any five feet (5')								
Typical Analysis	4140	С	Mn	Р	S	Si	Cr	Мо	
		.40	.85	.020	.025	.25	.90	.20	
	E-4140	С	Mn	Р	S	Si	Cr	Мо	
		.42	.83	.006	.005	.28	1.02	.22	
Characteristics	 This high strength precision ground shafting is produced to exacting OD tolerances. The product offers the highest degree of overall accuracy and concentricity with a seam free surface finish of RMS 25 max. Precision ground shafting 4140 is available in both imperial and metric sizes 								
Typical Applications	 All forms of close tolerance shafting: camshafts, drive shafts, mill shafts, motor shafts, pump shafts, bolts, pins, studs, etc 								
Mechanical Properties	ASTM A²For 3" o	 For 215/16" or 74.9 mm diameter bar and smaller, ASTM A193, Grade B7 applies. For 3" or 76.2 mm diameter and greater, ASTM A434, Class BD or BC applies. 							

Alloy Cold Finished AISI 4140 PRECISION GROUND SHAFTING (UNS G 41400)	Size Tolerances - all tolerances are MINUS
11/2" dia. (38.1 mm) and under	Minus 0.001" (0.03 mm)
Over 1 1/2" dia. to 2 1/2" dia (63.5 mm)	Minus 0.0015" (0.04 mm)
2 1/2" dia. to 3" dia. (76.2 mm)	Minus 0.002" (0.05 mm)
Over 3" dia. to 4" dia (101.6 mm)	Minus 0.003" (0.08 mm)
Over 4" dia. to 6" dia (152.4" mm)	Minus 0.004" (0.10 mm)
Over 6" dia	Minus 0.005" (0.13 mm)

Alloy 4140/ 4142

Alloy AISI/SAE 4140/ (UNS G 41400/G 414		- Chror	nium-M	olybder	num Alla	oy Macl	hinery S	teel
Typical Analysis		С	Mn	Р	S	Si	Cr	Мо
	4140	.40	.85	.020	.025	.25	.90	.20
	4142	C	Mn	Р	S	Si	Cr	Мо
	4142	.42	.83	.006	.005	.28	1.02	.22
Characteristics		providunifor treatr N/mm section resists temperature approvidual annear approvidual (25RM)	des good mity of ment and not	hardness disconnected trainable shock. Tapplicati eat treated and to demand the ce which dening. Addition, but available available control of the control of	s penetres and strest strength ions and e, all corney may ons and empered may be alternativars are sizes may ble in a p	ation arength. 140,00 mbined be used also in secondition to the consideration be called a consideration a consideration be called a consideration a consideration a consideration a consideration a consideration and consideration and consideration a	The chroind the marker of 170 or psi (96 with good in both sour gas are ably incompart to a harker arground	olybder bond rea 0,000 ps 5 N/mm d ductil high an environ e steels creased be nitric dness of eated. T surface
Typical Applications		holde	rs. A wic	le variet		patch" a	g rods, sp applicati s etc.	
Typical Heat Treatm	ent	- F - Annea - 8 - Norma - 8 - Harde	Commen Finish 95 Iling 315°C/8 Alizing 370°C/9 ned & T y below	350°C Co 200°C Co empered	ol slowly ol in air I: 820°C	/ 870°C	nace : Oil quer accordin	

Alloy AISI/SAE 4140/ 4142 (UNS G 41400/G 41442)	- Chromium-Molybdenum Alloy Machinery Steel
Mechanical Properties	 Annealed: Tensile Strength (min) - 100,000 psi Elongation (min) - 18% Reduction of Area (min) - 50% Hardness: 22RC max Charpy V-Notch at -50°F - 20 FT LBS average- Minimum15 FT LB Reduction Ratio - Minimum 4:1

Alloy AISI/SAE 4140/ 4142 (UNS G 41400-G 41442)	- Heat trea tempering meets the	Mechanical Properties - Heat treated to HRC 22 maximum for sour gas service. Minimum tempering temp 1150° F. Conforms to NACE Standard MR01-75. Also meets the tensile requirements of L80 as below - Heat Treated and Stress Relieved to requirements of ASTMA434CLBC/ BD ≥3" To 9 1/2" Dia, minimum values 3 3/4" Dia 5 3/4" dia 9.5" dia					
Size - inches	3 3/4	1" Dia	5 3/4" dia		9.5" dia		
Spec	ВС	BD	ВС	BD	ВС	BD	
Tensile Strength, psi	115K	140K	110K	135K	105K	130K	
Yield Strength, psi	95K	110K	85K	105K	80K	100K	
Elongation (%)	16	14	16	14	15	14	
Reduction of Area (%)	45	35	45	35	40	35	

Alloy AISI/SAE 4140/ 4142 (UNS G 41400/G 41442)	Mechanical Properties - Annealed - Typical						
Size - inches	1" dia.	2" dia.	4" dia.	8" dia.			
Tensile Strength, psi	98,000	102,000	101,000	100,000			
Yield Strength, psi	61,000	62,000	57,000	58,500			
Elongation (%)	23	26	25	21			
Reduction of Area (%)	54	55	56	59			
НВ	197	212	202	197			
Machinability	66	66	66	66			

Alloy AISI/SAE 4140/ 4142 (UNS G 41400/G 41442)	Mechanical Properties - Heat treated to requirements of ASTM A.193 Grade B7 - Up to 2.5" Diameter, Minimum Values					
Size - inches	Up to 2 1/2" dia	> 2 1/2" to 4"				
Tensile Strength, psi	125,000	115,000				
Yield Strength, psi	105,000	95,000				
Elongation (%)	16	16				
Reduction of Area (%)	50	50				
HB (Max)	321	115,000				

Alloy 4140, 4145

Alloy AISI/SAE 4140 (UNS G 41400-G 41		- Chr	omium [.]	-Molybo	denum A	Alloy Ma	chiner	y Steel		
Typical Analysis	4140		С	Mn	Р	S	Si	Cr	Мо	
	4140		.40	.85	.020	.025	.25	.90	.20	
	E-4140		С	Mn	Р	S	Si	Cr	Мо	
			.42	.83	.006	.005	.28	1.02	.22	
	4145		С	Mn	Р	S	Si	Cr	Мо	
			.45	.85	.020	.025	.25	.90	.20	
Characteristics		used provunif trea N/m sect resistem app – In the weal induanne app Procedure (25F)	d and verides go ormity outment a name) for ions are stance to perature repriate ne harde action had alled coroximate duct is a RMS Max	ersatile of hardrof hardrof hardrof hardrof small se attainate shock the application hardening ondition ely. Son also available.	machine ness pen ness and dile stren nections a able, all . They m rations an eatment d temper ich may g. Altern , bars ar ne sizes i lable in	ry steels etration strength gths in o and 140, combine hay be used also in the consideratively, e supplied a precisi	The chand the and they refer of 000 psi d with ged in bedinged in the derably they maked to a lealcium on grou	nong the nromium e molybd respond i 170,000 (965 N/r good duc oth high as enviro ese stee increase y be nit hardness treated. nd surface	content lenum in readily t psi (117 nm2) for ctility an and low onments ls posses ed by fla rided. In of HB 20 The 414 ce finish	nparts o heat '2 c larger d with ss good me or the 07
Typical Application	ns	holo	lers. A v	vide var	iety of "		" applic	, spindle ations, c		ars,
Typical Heat Treat	ment	– Ann – Nori – Hard usua	Comm Finish ealing 815°C malizing 870°C dened &	950°C / 850°C } / 900°C : Tempe	Cool in a	wly in fu air °C/ 870'	°C Oil q	uench; T ding to t		

Alloy AISI/SAE 4140- 4145 (UNS G 41400- G 41450)	Mechanical Properties - Heat treated to HRC 22 max for sour gas service. E-4140 Aircraft quality vacuum degassed to AMS 2301. Magnetic particle tested. Minimum tempering temp 1150° F. Conforms to NACE Standard MR01-75 Also meets the tensile requirements of C75 and L80							
Size - inches	2 1/4" Dia	3 3/4" Dia	6" Dia	10" Dia				
Tensile Strength, psi	106,600	108,177	108,118	105,102				
Yield Strength, psi	92,060	88,834	86,424	82,405				
Elongation (%)	25.0	28.7	26.7	31.0				
Reduction of Area (%)	69.0	66.7	67.0	66.4				
Hardness RC	21	18	18	18				
Charpy V-Notch at -50°F	113-105-94	56-56-41	56-56-60	16-21-16				
Reduction Ratio	70:1	37:1	13:1	10:1				

Alloy AISI/SAE 4140- 4145 (UNS G 41400- G 41450)	Mechanical Properties - Heat Treated and Stress Relieved to requirements of ASTMA434CLBD/BC ≥3" To 9 1/2" Dia, Typical							
Size - inches	3 1/2" dia	5 3/4" dia	7 1/2" dia	10 1/2" dia				
Tensile Strength, psi	156,572	149,714	140,571	147,616				
Tensile Strength, N/mm ²	1080	1032	969	1018				
Yield Strength, psi	123,999	114,857	110,286	113,792				
Yield Strength, N/mm ²	855	792	760	785				
Elongation (%)	17	15	18	16				
Reduction of Area (%)	53.6	53.7	53.6	42.4				
НВ	321	311	293	302				
Machinability	55	55	55	55				

Alloy AISI/SAE 4140- 4145 (UNS G 41400- G 41450)	Mechanical Properties - Heat treated to requirements of ASTM A.193 Grade B7 - ≤3" Dia, Typical						
Size - inches	3/8" dia.	1 1/8" dia	2" dia	3" dia			
Tensile Strength, psi	154,000	131,000	140,000	135,000			
Tensile Strength, N/mm²	1063	903	965	931			
Yield Strength, psi	142,000	119,000	126,000	108,000			
Yield Strength, N/mm ²	979	820	869	745			
Elongation (%)	20	18	18	19			
Reduction of Area (%)	57	55	56	55			
НВ	311	269	286	277			
Machinability	35	35	35	35			

Alloy AISI/SAE 4140- 4145 (UNS G 41400- G 41450)	Mechanical Properties - Annealed - Typical							
Size - inches	1" dia.	2" dia.	4" dia.	8" dia.				
Tensile Strength, psi	98,000	102,000	101,000	100,000				
Yield Strength, psi	61,000	62,000	57,000	58,500				
Elongation (%)	23	26	25	21				
Reduction of Area (%)	54	55	56	59				
НВ	197	212	202	197				
Machinability	66	66	66	66				

Alloy 4145 Drill Collar Bars

Alloy AISI 4145 H MODIFIED HTSR	- Solid Drill Collars to API Spec 7						
Typical Analysis	С	Mn	P+ S	Si	Cr	Мо	
4" - 6 1/4" dia	.42/.49	.80/1.10	.025Max	.15/.35	.75/1.20	.15/.25	
6 3/8" - 7" dia	C	Mn	P+ S	Si	Cr	Мо	
	.42/.49	.85/1.15	.025Max	.15/.35	.85/1.15	.25/.35	
7 1/8" - 10" dia	С	Mn	P+ S	Si	Cr	Мо	
, ,, , , , , , , , , , , , , , , , , , ,	.42/.49	.85/1.20	.025Max	.15/.35	.85/1.15	.25/.35	
10 1/8" - 11" dia	C	Mn	P+ S	Si	Cr	Мо	
	.42/.49	1.00/1.30	.025Max	.15/.35	1.00/1.30	.25/.35	
Characteristics	.42/.49 1.00/1.30 .025Max .15/.35 1.00/1.30 .25/.35 - Drill collar bars are usually supplied in lengths of 31'0"/31'6" with a straightness tolerance of 125" in 5 ft. The heat treatment is by water quenching, tempering and stress relieving to the mechanical properties detailed below. Tensile and impact specimens are taken within 3 ft. of the end of the bar and at 1" below the surface. Tensile and impact testing is determined on the basis of one test per 10 bars per heat, per heat treatment lot. Bars are surface hardness tested at both ends, 9 ft. from each end. All bars are individually identified.						

Alloy AISI 4145 H MODIFIED HTSR	Mechanical Properties - Typical		
Size - inches	4 3/4" Dia	6 1/2" Dia	
Tensile Strength, psi	156,509	148,884	
Yield Strength, psi	137,452	126,020	
Elongation (%)	19.6	18.6	
Charpy V-Notch Ft/lb/J	52-52-51 ft/lbs	50-51-52 ft/lbs	
Hardness HB	311	302	

en-(•) (=metals

Alloy AISI 4145 H MODIFIED HTSR	Mechanical Properties - Specified	
Size - inches	Through 6 7/8" Dia	Over 6 7/8" Dia
Tensile Strength, psi	140,00	135,000
Tensile Strength, N/mm ²	965	930
Yield Strength, psi	110,000	100,000
Yield Strength, N/mm²	759	689
Elongation (%)	13	13
Impact values at R.T.		
Izod ft/lbs/Joules		
Charpy V-Notch Ft/lb/J	40/54 Min	40/54 Min
Hardness HB	40/54 Min	40/54 Min
1/8" below surface	285/ 341	285/ 341
1" below surface	285 min	285 min

Alloy 4150 Calcium Treated

Alloy AISI 4150 CALCIUM TREATED HTSR	- a '50' Carbon Chromium-Molybdenum Alloy Steel with Improved Machinability							
Typical Analysis		C Mn P S Si Ni Cr						
		.50	.85	.020	.06/. 1	.30	.95	.20
Characteristics	mac may calc the with (sulf life. — Bars to a man	hinabili or may ium. Th steel to the alu fur and of are sup hardnes	ty as a r not inc e calciu a much iminates calcium oplied in	esult of lude the m treatr more glos to form) is improved the hear of approximation.	an aim s injection ment mo obular for a softer i oved ma at treate oximately	sulfur co n of a m difies th orm. Ca nclusior chinabil d and st y HB300	th impro- ontent. T ninute qualities lcium alsons. The n lity and l cress relicand are and are	The produantity of the inclusion combon to the inclusion combon to the inclusion conger to the inclusi
Typical Applications	– Shaf	ts, gear	s, pinio	ns, spino	dles, axle	es, bolti	ng, etc	
Typical Heat Treatment	– Tem	pering -	550°C		Water Q Air Coo 2°F	-		
Mechanical Properties	TensYieldElonRed	d Streng gation - uction o	ngth - 5 th - 23, 20% f Area -	·				

Alloy 4330+V

Alloy Grade 4330+V	- (- a Nickel-Chromium-Molybdenum-Vanadium Alloy Steel									
Typical Analysis		С	Mn	Р	S	Si	Ni	Cr	Мо	V	
		.30	.85	.010	.005	.25	1.95	.90	.45	.08	
Characteristics	 This steel is a modified Grade 4330 product with enhanced nickel, chromium, molybdenum and vanadium additions. The combination of chemistry and controlled heat treatment conditions result in an optimized combination of strength and toughness. This product is bested selected for highly stressed and demanding fatigue applications. Grande 4330 + V was developed for enhanced room temperature as well as low temperature Charpy-V-Notch performance. This product is available only in heat treated condition. 										
Typical Applications		Highly : propert		d parts	requirin	g enha	nced to	ughnes	s and fa	itigue	
Mechanical Properties	 Grade 4330+V is available in two strength combinations: Yield Strength, Minimum - 150/160 (10" Diameter Maximum) Tensile Strength, Minimum -150,000 psi % Elongation, Minimum - 160,000 psi % Reduction of Area, Minimum - 14 C-V-N, Room Temperature - 50 Longitudinal ft-lbs, minimum - 45 								ım)		

Alloy 4340

Alloy AISI/SAE 4340 (UNS G 43400) & E04340 (UNS G43406)	- a N	ickel-Ch	nromiur	n-Molyb	odenum	Alloy .	Machine	ry Stee	ι
Typical Analysis		С	Mn	Р	S	Si	Ni	Cr	Мо
Characteristics	mol 410 adv req – Also stre bot wea – For to r Nor the	lybdenur 0 series, cantages uired in the hig essed par h elevate ar resista special s magnetic MIL-S- 50 malized heat tre	m alloy p with in are real heavy se h fatigue ts in the ed and l ance. service of particle 00 and A and Ten	cossesses creased ized prirections. e strenge e most se ow temp condition e inspect AMS 2301 npered) d stress-	s much of ductility neipally the of 43-evere concernature as or whation we still in concern to HB 23-relieved	deeper of and to where of the whole of the w	1.80 -chromiu hardenab bughness. high stren es it idea s. It may nments; a terial ma ircraft Qu .I (Hot ro .AISI 434 cion at ap aled cond	rility that These These Ingth is I for all be used and has I be subuality E- Illed I is stoce I proxima	highly I in good oject 4340 ked in ately
Typical Applications	bol		uds, gea	rs, axle	shafts,		nafting, h afts, bor		
Typical Heat Treatment	 Forging Commence 1200°C max. Finish 950°C Normalizing 870°C/ 900°C Hardened & Tempered: (Owing to the air-hardening properties of AISI 4340, normalizing is not recommended except when followed by tempering.) 810°C/860°C. Oil quench. 								
Mechanical Properties	– Ter – Yie – Eloi – Rec	nealed Ty Isile Stre Id Streng Ingation - Iuction of Idness - 2	ngth - 8 th - 80, 28% f Area -	000 psi 57%					

Alloy AISI/SAE 4340 (UNS G 43400) & E04340 (UNS G43406)	Mechanical Properties - Annealed - Typical								
Size - inches	1" dia	2" dia	4" dia	8" dia					
Size - mm	25.4 mm	50.8 mm	101.6 mm	203.2 mm					
Tensile Strength, psi	114,000	110,000	106,000	104,000					
Tensile Strength, N/mm²	786	758	731	717					
Yield Strength, psi	91,000	86,000	85,500	81,500					
Yield Strength, N/mm ²	627	593	590	562					
Elongation (%)	20	23	21	22					
Reduction of Area (%)	46	49	50	48					
НВ	229	223	217	217					
Machinability	55	55	55	55					

Alloy AISI/SAE 4340 (UNS G 43400) & E04340 (UNS G43406)	Mechanical Properties - Heat Treated and Stress Relieved to ASTM A 434 - Typical.								
Size - inches	2" dia	3 3/4" dia	7" dia	10" dia					
Size - mm	50.8 mm	95.25 mm	177.8 mm	254 mm					
Tensile Strength, psi	162,000	155,904	145,152	144,256					
Tensile Strength, N/mm ²	1117	1075	1000	995					
Yield Strength, psi	145,000	141,568	111,104	124,544					
Yield Strength, N/mm ²	1000	976	766	858					
Elongation (%)	16	19	17	18					
Reduction of Area (%)	50	55	47	45					
НВ	331	321	302	302					

Alloy AISI/SAE 4340 (UNS G 43400) & E04340 (UNS G43406)	Mechanical Properties - Normalized and Tempered - Typical. E-4340 AQ MIL-S-5000						
Size - inches	2" dia	4" dia					
Tensile Strength, psi	116,000	112,000					
Yield Strength, psi	94,000	87,500					
Elongation (%)	20	21					
Reduction of Area (%)	53	52					
НВ	235	229					

Alloy 8620

Alloy AISI/SAE 8620	- a Ni	ickel-Cl	nromiui	n-Molyl	bdenum	Case H	lardenir	ng Alloy	Steel
Typical Analysis		С	Mn	Р	S	Si	Ni	Cr	Мо
		.20	.80	.020	.0025	.25	.55	.50	.20
Characteristics	cart com N/m min may	ourized a abined w nm2). Ua imum di also be	and hard with core niform construction stortion	dened to e strengt ase dep are cha ot carbo	case-har produce h of the th, hardr racterist urized, ir rbon allo	e a hard order or less and ics of the a varie	wear re f 125,00 I wear pr nis grade ety of ge	sistant of psi (86 operties). The st	ase 2 s with
Typical Applications		 Heavy-duty gears, pinions, spline shafts, piston pins, transmission components, rock drilling bit bodies, plastic molds, etc. 							
Typical Heat Treatment	- Ann - Nori - Harr or w requ - Carl eigh 150 - 150	- Comme - Finish ealing - 840°C malizing - 900°C dened & vater quaired ourizing of hours °/232°C °C - Cas	Furnaces Air cool Tempe ench, te - Direct (for .06	red (Und emper at oil que 0 case d	carburize t 200°/65 nch - Car epth). O ox. RC 65 ox. RC 58	50°C aco burize a il quenc	cording that 900°/	to prope 925°C fo	rties
Availability					lable Hor orged, As			ed.	

Alloy EN30B

Alloy EN30B - BS 970 GRADE 835M30 BAR	- a 4	1/4%	Nickel-	Chrom	ium-M	olybder	num All	oy Steel		
Typical Analysis		С	Mn	Р	S	Si	Ni	Cr	Мо	
		3/.3 3	.40/.6 0	.025x	.015x	.10/.3 5	4.0/4. 3	1.1/1.24	.02/.40	
Characteristics	– – – EN30 – This	 This product is stocked in two heat treat conditions: Quench and tempered Annealed EN30B may be carburized if extra wear resistance is required. This steel may be calcium treated. * EN30B is produced to AQ, AMS 2301 cleanliness level. 								
Typical Applications	bodi	 Down-hole tools, heavy duty construction tools, rock drilling bit bodies, highly stressed gears and transmission components, heavy duty shafts and rolls. 								
Typical Heat Treatment	- Doul - Macl 1200 - Norr (156 	For the finability of the fina	nealing pest, air lity: Do ot exced rdness of F. Temp o 1590° ool to ro per 530 ss Reliev & Temp	- Auste Cool to uble An of 269 H er & Str F). coom ter °C (990 ve 500° pered A	enitize (o appro- neal at C (1220 IB Max ess Rel mperatu °F), air C (930° ustenit	ximately 635°C t O'F) is achiev ieve - Au ure cool F), air c ize 850°	365°C (1 40°C (1 to 650°C rable. ustenitiz ool C to 865	560°F to 7 100°F) (1175°F to se 850°C to s°C (1560° at 200°C (4	o 865°C	
Mechanical Properties	– Meas	sured	at 1" be	elow the	e surfac	e				

Alloy EN30B - BS 970 GRADE 835M30 BAR	Mechanical Properties - Quench, Tempered & Stress Relieved - Typical - Annealed - Typical - HB 269 Maximum							
Size - inches	Up to and including 10" dia.	Greater than 10" Dia						
Yield Strength, psi	135,000 psi	130,000 psi						
Ultimate	160,000 psi	150,000 psi						
Elongation (%)	13%	13%						
Reduction of Area (%)	50%	45%						
CVN at -50°F	15 ft-lbs	15 ft-lbs						
CVN at Room Temperature	45 ft-lbs	45 ft-lbs						
Hardness	HB321 to 363	HB321 to 363						

^{*} Note that the mechanical properties of EN30B bar exceeding 10" dia. are on an "aim to" basis.

Alloy E52100

Alloy AISI/SAE 52100 (UNS G52986)	- High-Carbon, Chromium Alloy							
Typical Analysis	C	Mn	Р	S	Si	Cr		
	.98/1.10	.25/.45	.025 Max	.025 Max	.15/.30	1.3/1.6		
Characteristics	 This high carbon, chromium alloy is stocked in the annealed condition. This grade is manufactured by the electric furnace process. Typically the quenched hardness is 62 to 66 HRC depending mainly upon section thickness 							
Typical Applications	 Grade E52100 is used primarily for races and balls or rollers of rolling-element (anti-friction) bearings. The grade is also suitable for parts requiring high hardness and wear resistance 							
Typical Mechanical Properties (Annealed)	 Yield - 85,000 psi Tensile - 105,000 psi Elongation - 17% Reduction Area - 50% BHN at surface- 228 							

Aluminum Extrusions

Aluminum Squares and Rounds Only 6061

Aluminum 6061 - ASTM B221, AMS 4150	- Alloy & Temper 6061-T-6 Solution heat-treated and artificially aged.								
Typical Analysis	Al	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
	BAL	.4/.8	.7	.15/. 4	.15	.8/1. 2	.04/.3	.25	.15
Characteristics	 This is the least expensive and most versatile of the heat- treatable aluminum alloys and offers a good range of properties. It is generally selected where welding or brazing is required and for its high corrosion resistance. 								
Typical Applications	 General engineering and structural components. Trucks and trailers. Boats. Furniture. Pipe fittings. Miscellaneous parts requiring good corrosion resistance. 								
Mechanical Properties	– E – Typica – L – E	JTS Yiel Llongation al Prope JTS Yiel	d - 38 l on in 2 rties: d - 45 l on in 2	ksi, 35 ks " - 8%-10 ksi, 41 ks " - 12%-1)% si				

Aluminum

Bar Data Table

Aluminum Grade 6061 and 6063 Weight Table						
Diameter (inches)	Decimal (inches)	Section Area (sq. in.)	Weight (lbs/ ft.)			
3/8	0.375	0.110	0.133			
1/2	0.500	0.196	0.236			
5/8	0.625	0.307	0.367			
3/4	0.750	0.442	0.529			
7/8	0.875	0.601	0.721			
1	1.000	0.785	0.940			
1 1/8	1.125	0.994	1.164			
1 1/4	1.250	1.227	1.470			
1 3/8	1.375	1.484	1.780			
1 1/2	1.500	1.766	2.120			
1 3/4	1.750	2.404	2.880			
2	2.000	3.140	3.780			
2 1/4	2.250	3.974	4.830			
2 1/2	2.500	4.906	5.880			
2 3/4	2.750	5.937	6.990			
3	3.000	7.065	8.800			
3 1/8	3.125	7.666	9.200			
3 1/4	3.250	8.292	9.940			
3 1/2	3.5 0	9.616	11.500			
3 3/4	3.750	11.039	12.989			
4	4.000	12.560	15.100			
4 1/8	4.125	13.357	16.040			
1 1/4	4.250	14.179	17.160			
1 1/2	4.500	15. 896	19.100			
1 3/4	4.750	17.712	21.010			
5	5.000	19.625	23.091			
5 1/8	5.125	20. 619	24.750			
5 1/2	5.500	23.746	27.990			
5	6.000	28.260	33.900			
5 1/8	6.125	29. 450	35.360			
6 1/4	6.250	30.664	36.820			
6 1/2	6.500	33.166	38.980			
7	7.000	38.465	45.170			
7 1/2	7.500	44.156	52 .130			
3	8.000	50.240	60.320			
3 1/2	8.500	56.716	67.250			
9	9.000	63.585	74.740			
9 1/2	9.500	70.846	83.400			
10	10.000	78.500	94.330			
12	12.000	113.040	133.240			
-	.=		. 3012 .0			

Bronze Cast

Bronze

SAE660 Bearing

SAE660 Bearing Bronze (UNS C93200)	
Typical Analysis	Cu Sn Pb Zn
	83% 6.9% 7.0% 2.5%
Characteristics	 Produced conforming to ASTM B505, SAE660 Bearing Bronze (Bars and Tubes). Produced oversized. to finish, machine to the nominal size ordered. Density: 0.322 lb/in3 at 68°F; 8.91 g/cm3 at 20°C
Typical Applications	 Industrial Machinery & Equipment Market: In-plant Equipment, Industrial Valves & Fittings, Turbines, Off-highway Vehicles Products: Bushings, Plumbing Valves, Air Brakes, Brass Anodes for Plating, Brass Plating of Steel Belts in Tires, Wear Plates in Cranes, Hydraulic Seals, Gears, Bearings, Valve Stems, Turbine seals, Flanges Transportation Equipment Market: Automotive Non-electrical, Railroad, Marine, Aircraft Products: Motors, General Hardware, Carburetor Assemblies, Fittings Military Market: All Specified Military Applications Water Handling Equipment: Alloys used in Marine service and products such as seawater piping, pumps, valves, etc Special Market (Fastest Growing Market) Products: Food Processing Equipment, Hydraulic Seals, Plumbing Valves, Wear Plates and Guides.
Mechanical Properties	 Yield - 18,000 psi Tensile Strength - 35,000 psi Elongation - 20% Hardness - 60-70 HBN

Bronze

Aluminum Bronze Alloy 954

ALUMINUM BEARING	
BRONZE, ALLOY 954	(UNS
C95400)	

C95400)					
Typical Analysis		Cu	Fe	Al	_
	8	85%	4.0%	11.0%	
Characteristics		rsized to	o finish, m	achine to	954 Aluminum Bronze o the nominal size at 20°C
Typical Applications	- adjusting nuts	– g	ibs and wa	ays	- runout table slides
	agitators	– g	uide pins		 scraper blades
	 ball socket seats collets 	5 – h	old down	bars	– screw down nuts
	– blanks and rolls		ydraulic v arts	alve	- shoes
	boring tools	– ir	serts		– slides
	 cam followers an slides 	nd – k	eys		 steel mill slippers
	- chuck Jaws	– la	the beds		strike plates
	– chutes	– li	ners		support rails
	– collets	– m	nachine to	ol parts	brine slurry equipment tie rods
	 cylinder mold tie rods 	e _{– m}	nandrels		unscrewing mold components
	– die rings	– p	ickling ho	oks	wear plates and strips
	- draw dies	– p	ilots		welding jaws
	– fasteners	– p	iston guid	es	– wipers
	– fingers		lastic mol pplication		wiping blocks
	fittings	– p	lungers		 work rest blades
	 farming rolls and sections 	d – p	ump rods		
Mechanical Properties	Yield - 35,000 psTensile StrengthElongation - 18%Hardness - 140-1	- 85,000) psi		

Carbon Steels

Carbon 1018

Carbon AISI/SAE 1018 (UNS S10180)	- a Special Q	uality L	ow-Carl	bon Mad	chinery	Steel
Typical Analysis		С	Mn	Р	S	Si
		.18	.57	.020	.030	.22
Characteristics	 Produced to the requirements of ASTM A576, this special bar quality, low-carbon machinery steels, is extremely versatile. It machines well and is easily weldable. The steel grade can be carburized 					
Typical Applications	 Bearing in mind the tensile strength of approximately 60,000 psi (414 N/mm²), the steel is suitable for a wide variety of general engineering parts, shafts, studs, bolts, tie-rods etc 					
Mechanical Properties	 Typical as sum Tensile Strenge Yield Strenge 2Yield Strenge Elongation Reduction of Hardness 	ngth - 58 Strengt th - 32,0 Strength 25% Area - 5	h - 400 00 psi - 220 N/	N/mm ²		
Comment	This product complete wi belowTensile StrengYield StrengElongation m	th the m ngth - 58 th - 36,0	echanic ,000 - 8 00 psi m	al prope 0,000 ps	rty requ	irement

Carbon 1018 Cold Finished

Carbon AISI/SAE 1018 COLD FINISHED (UNS G10180)	- Cold Drawı	n '20' Ca	ırbon St	teel, av	ailable	in all bar sections	
Typical Analysis	1018	С	Mn	.022	S		
	1010	.18	.70	.022	.024		
	1020	С	Mn	Р	S		
	1020	.20	.50	.017	.025		
Characteristics	- Most cold finished bars are produced by cold drawing oversize hot rolled bars through a die. The cold reduction of the bar results in significantly improved mechanical properties, with a smooth surface finish to close tolerances. The cold working of the bar likewise improves machinability, usually rated at 76. Larger bars are often produced by turning and polishing only. In this case, the properties of the steel are not improved and remain the same as the original hot rolled, special quality bar. The product is easy to weld and readily responds to carburizing. Cold finished product is manufactured in conformance to ASTM A108						
Typical Applications	 All forms of gears, pinio 		=	achinery	parts. V	Vhen carburized -	

Carbon AISI/SAE 1018 COLD FINISHED (UNS G10180)	Size Tolerances -Rounds Tolerances - all tolerances are MINUS
11/2" dia. (38.1 mm) and under	Minus 0.002" (.050 mm)
Over 1 1/2" dia. to 2 1/2" dia (63.5 mm)	Minus 0.003" (.075 mm)
Over 2 1/2" dia. to 4" dia (101.6 mm)	Minus 0.004" (.100 mm)
Over 4" dia. to 6" dia (152.4" mm)	Minus 0.005" (.125 mm)
Over 6" dia. to 8" dia (203.2 mm)	Minus 0.006" (.150 mm)

Carbon AISI/SAE 1018 COLD FINISHED (UNS G10180)	Mechanical Properties - Expected minimum properties - Cold Drawn						
Size - inches	1" dia	2" dia	3" dia				
Size - mm	25.4	50.4	76.2				
Tensile Strength, psi	65,000	60,000	55,000				
Tensile Strength, N/mm ²	448	414	379				
Yield Strength, psi	55,000	50,000	45,000				
Yield Strength, N/mm ²	379	345	310				
Elongation (%)	16	15	15				
Reduction of Area (%)	40	35	35				
НВ	131	121	111				

Carbon AISI/SAE 1018 COLD FINISHED (UNS G10180)	Mechanical Properties - Typical properties of material supplied - Cold Drawn							
Size - inches	1" dia	2" dia	3" dia					
Size - mm	25.4	50.4	76.2					
Tensile Strength, psi	91,000	84,000	74,000					
Tensile Strength, N/mm²	627	579	510					
Yield Strength, psi	73,000	68,000	60,000					
Yield Strength, N/mm ²	503	469	414					
Elongation (%)	14.4	16.2	20.7					
Reduction of Area (%)	52.1	48.5	49.4					
НВ	187	183	163					

Carbon

1040-1045

Carbon AISI/SAE 1040- 1045 (UNS G10400- G10450)	- a Special Bar Quality Medium-Carbon Machinery Steel						
Typical Analysis	C Mn P S Si						
	.40 .75 .020 .030 .25						
Characteristics	 General purpose, fine grain, machinery steel suitable for a wide range of applications in the condition as supplied - approximately 90,000 psi (620 N/mm2) depending on the size of section. This steel is primarily water- hardening, but may also be quenched in oil. Excellent wear resistance can be obtained by flame or induction hardening. Care required if welding, due to higher carbon content. Good machinability 						
Typical Applications	 Shafts, axles, spindles, bolts, lightly stressed gears, machined parts of all types. 						
Typical Heat Treatment	 Forging - Commence 1150°C Max finish 925°C. Annealing - 800° to 830°C Surface cool 870/915°C air Cool Normaling - 830°C to 850°C water quench Hardening - 850°C to 870°C oil quench. Tempering - 425°C to 870°C according to properties 						
Mechanical Properties	 Typical - as supplied Tensile Strength - 90,000 psi (620 N/mm²) Yield Strength - 23,000 psi (410 N/mm²) Elongation - 25% Reduction of Area - 50% Hardness - HB 201 Machinability - 65 						

Carbon Cold Finished 1045 TG&P

Carbon AISI 1045 PRECISION GROUND SHAFTING (UNS G 10450)	- Ground and polished shafting supplied in fibre tubes						
Typical Analysis		С	Mn	Р	S	Si	
		.47	.75	.030	.035	.25	
Characteristics	 - This high strength precision ground shafting is produced to exacting size and straightness tolerances. The product offers the highest degree of overall accuracy and concentricity with a seam free surface finish of RMS 25 max. Precision ground shafting C1045 is available from 1/2" - 615/16"dia. with tensile strength ranging from 90,000 to 115,000 psi (621/793 N/mm2). A first class product at an economical price. Cold finished product is manufactured in conformance to ASTM A108. 						
Typical Applications						_	nshafts, drive shafts, olts, pins, studs etc.

Carbon AISI 1045 PRECISION GROUND SHAFTING (UNS G 10450)	Size Tolerances - all tolerances are MINUS
1 1/2" dia. (38.1 mm) and under	Minus 0.001" (.025 mm)
Over 1 1/2" dia. to 21/2" dia (63.5 mm)	Minus 0.0015" (.075 mm)
2 1/2" dia. to 3" dia (76.2 mm)	Minus 0.002" (.050 mm)
Over 3" dia. to 4" dia (101.6 mm)	Minus 0.003" (.75 mm)
Over 4" dia. to 6" dia (152.4" mm)	Minus 0.004" (.125 mm)
Over 6" dia. to 7" dia (177.8 mm)	Minus 0.005" (.150 mm)

Carbon AISI 1045 PRECISION GROUND SHAFTING (UNS G 10450)	Mechanical Properties - Typical as supplied		
Size - inches	1" dia	3" dia	7" dia
Size - mm	25.4	76.2	177.8
Tensile Strength, psi	115,000	102,500	90,000
Tensile Strength, N/mm ²	793	707	620
Yield Strength, psi	94,000	79,000	59,000
Yield Strength, N/mm ²	648	524	407
Elongation (%)	18	17	18
Reduction of Area (%)	34	42	35
НВ	229	212	187
Machinability	64	64	64

Carbon Cold Finished 1045 Chrome Plated Shafting

Carbon AISI/SAE 1045 CHROME PLATED SHAFTING	- This produc	t is ava	ilable i	n both i	imperia	l and m	etric sizes
Typical Analysis		С	Mn	Р	S	Si	
		.45	.75	.030	.040	.20	
Characteristics	- The basic product is cold drawn, precision ground and polished AISI 1045 shafting with a seam free surface finish of RMS 25 max. The bars are then hard chrome plated by electrolytically deposited layer of chromium metal on the surface. This hard chromed surface confers the important properties of corrosion resistance and wear resistance; it is also very smooth and therefore has a low coefficient of friction. Not least of all, it has an attractive and durable decorative appearance.						
Typical Applications	- Hydraulic shafting, pneumatic piston rods, pump shafting, etc						
Chrome Plating	 Finished thickness of0005" min per side (Winnipeg Branch: 0.001"min per side) Hardness of chrome - Rockwell C 65/70 Surface finish - RMS 12 max 						Branch:

Carbon AISI/SAE 1045 CHROME PLATED SHAFTING	Size Tolerances - Despite the chrome plating, the same fine minus tolerances of AISI 1045 Precision Ground Shafting apply - all tolerances are MINUS
1 1/2" dia. (38.1 mm) and under	Minus 0.001" (.025 mm)
Over 1 1/2" dia. to 21/2" dia (63.5 mm)	Minus 0.0015" (.037 mm)
2 1/2" dia. to 3" dia (76.2 mm)	Minus 0.002" (.060 mm)
Over 3" dia. to 4" dia (101.6 mm)	Minus 0.003" (.075 mm)

Carbon Cold Finished 1045 Induction Hardened

Carbon AISI/SAE 1045 INDUCTION HARDENED AND CHROME PLATED SHAFTING	 Induction Hardened and Chrome Plated Precision Ground Shafting, supplied in fibre tubes This product is available in both imperial and metric sizes 					
Typical Analysis		С	Mn	Р	S	Si
		.45	.75	.030	.040	.20
Characteristics	 As with chropher precision groinduction hat Rockwell C 5 This improve ensures supe plated in the advantages of induction hat 	ound and rdened v 5. is the pr rior wea same w of corros	polished which respectives ar resistation and	of the tance. The rome plane wear res	045 shaft surface oar and t e bars a ated sha sistance	ting. It hardnes the extrement then afting we howe
ypical Applications	 Hydraulic shafting, oil and water pump shafting, rotary pump shafts, and piston rods Finished thickness of0005" min per side (Winnipeg Branch: 0.001"min per side) Hardness of chrome - Rockwell C 65/70 Surface finish - RMS 12 max 					
Chrome Plating						
Induction Hardening	Case Depth -Case Hardne			0 min		
Tolerances	Allowance is tolerancesapply as ASTSee AISI 1045	M A29, 1	Table A1	.12		d stand
Mechanical Properties	- Typical 75,00	00 psi m	inimum	yield str	ength	

Carbon Cold Finished

Carbon AISI/SAE 1144 COLD DRAWN (UNS G 11440)	- A High-Strength Re-sulphurized Carbon/Manganese Steel (Available in round bar)						
Typical Analysis		С	Mn	Р	S	Si	
		.44	1.50	.040	.28	.22	
Characteristics	- This product is severely cold worked to produce 100,000 psi minimum yield strengths. It can therefore compete for application and use in parts normally requiring heat treated alloy grades in the HB range 235/277. The bars are stress relieved to minimize warpage. The sulphur content enhances machinability. C1144 has excellent induction hardening properties. Welding is not recommended. Conforms to ASTM A311, Class B. Available in cold drawn and precision ground surface finishes						
Typical Applications	 Arbors, keyed shafts, spindles, gears, pinions, pump shafts, machined parts in wide variety 					hafts,	
Mechanical Properties	 Typical - as supplied, Not normally available over 4" dia. because of the cold working required Tensile Strength - 125,000 psi (862 N/mm²) Yield Strength - 100,000 psi (690 N/mm²) Elongation - 12% Reduction of Area - 20% Hardness - HB 255 Machinability - 82 						
Tolerances	For cold finition	sh toler	ances Se	e 1045 T	G&P		

Carbon A105, A350 - LF2 DUAL

Carbon ASTM A105 & ASTM A350-LF2 DUAL CERTIFIED	- a Special Quality Fine Grain Carbon-Manganese Steel for Piping Components						
Typical Analysis A105 Spec.		С	Mn	Р	S	Si	
711 00 G pool		.35 max	.60/1.05	.040 max	.05 max0	.35 max	
A350-LF2 Spec.		С	Mn	Р	S	Si	
		.30 max	1.35 max	.035 max	.04 max0	.15/.30	
A105/A350-LF2		С	Mn	Р	S	Si	
		.20	1.24	.009	.021	.18	
Characteristics	 A105 and A350-LF2 are standard specifications for forged carbon steel piping components. A105 for ambient and higher-temperature service; A350-LF2 for low-temperature service with Charpy V-Notch impact energy testing. Components include flanges, various fittings and valves. Some components may be machined from hot rolled or forged bar, suitably heat treated, up to and including NPS 4. See details in the ASTM designations 						
Typical Applications	 A105 allows that for each .01% Carbon below .35, an increase of .06% Manganese is permitted over 1.05 to a maximum of 1.35. This explains the typical analysis above. 						
Typical Heat Treatment	_ _ _	Forging - Con Annealing - 8 - 870/ 91 Normaling - 8 Hardening - 8 Tempering - 4	00° to 830°C 5°C air Cool 330°C to 850° 350°C to 870°	Surface cool C water quer C oil quench.	nch		

Carbon ASTM A105 & ASTM A350-LF2 DUAL CERTIFIED	Mechanical Properti	es	
Spec	A105	A350-LF2	A105/A350-LF2
Tensile Strength Min, psi	70,000	70,000-95,000	70,000-95,000
Tensile Strength Min, N/mm²	485	485-655	485-655
Yield Strength, min psi	36,000	36,000	36,000
Yield Strength Min, N/mm²	250	250	250
Elongation (%)	22	22	22
Reduction of Area (%)	30	30	30
Hardness, maximum	187	15/12 ft-lbs	15/12 ft-lbs
CVN at -50°F		20/16 joules	20/16 joules

Carbon Cold Finished C12L14

Machinability

Carbon AISI/SAE C12L14 COLD FINISHED (UNS G 12144)	 Low-Carbon Re-sulphurized and Leaded Free machining Steel (Screw Stock), available n rounds, hexagons and some squares 						
Typical Analysis		С	Mn	Р	S	Pb	
		.09	.95	.07	.30	.25	
Characteristics	 A leaded free-machining steel, essentially for manufacturing parts that require considerable machining/threading with close tolerances and a bright, smooth finish. It is especially suitable for automatic screw machines. Not recommended for forming or welding; or parts subject to severe fatigue stress. Cold finished product is manufactured in conformance to ASTM A108 						
Typical Applications	– Fas	teners, l	oushings,	inserts	, coupli	ngs	
Carbon AISI/SAE C12L14 COLD FINISHED (UNS G 12144)	- Exp	ected r	Propert minimun ım value	n prope			awn
Size			1"	dia. (25	5.4 mm)	Cold Dra	awn
Tensile Strength, psi					87,500)	
Tensile Strength, N/mm²					603		
Yield Strength, psi					75,000)	
Yield Strength, N/mm ²					517		
Elongation (%)					15		
Reduction of Area (%)					42		
НВ		179					

2016 Product Manual 49

195

Cast Iron

Continuously Cast Iron 65-45-12 Ductile Iron

Continuously Cast Iron 65- 45-12 Ductile Iron							
Typical Analysis	C Mn P	S	Si				
	3.6-3.9 0.1-0.4 .10 ma		2.3- 2.8 Per	cent			
Characteristics	regular grades of duc some pearlite and les over 2 in. (51 mm) di 25%. This microstruct surface finishes	tile iron. The s than 5% wel ameter the po	matrix struc ll dispersed d earlite conte	ture will contain carbides. In bars ent will range up to			
Typical Applications	 Hydraulic-pump rotors, gear blanks, rams, machine-tool gibs, foundry patterns plates, ways, collets, valve bodies, manifolds, compressor valves, hydraulic cylinder bushings, rod bushings, etc 						
Typical Heat Treatment	 Because of its ferritic structure, this material is not intended for hardening 						
Mechanical Properties	 As-cast 65-45-12, ductile iron has approximately the same tension and yield strengths as hot rolled SAE 1035 steel in the as-rolled condition. Elongations in as-cast, 65-45-12 will be slightly lower than SAE 1035 steel in the as-rolled condition. This material is manufactured to produce material similar to ASTM specification A536. Tensile tests are taken from the actual as-cast bar. Tensile Strength (min)* - 65,000 psi Yield Strength (min)* - 45,000psi Elongation (min)* - 12% * Determined as prescribed by ASTM standards. 						

Hardness

Continuously Cast Iron 65-45-12 Ductile Iron

- Hardness properties listed are minimum, maximum across the bar. Hardness for shapes other than rounds will be supplied on request

Bar Dia - inches	Bar Dia - centimeters	BHN min to max
1-2	2.5-5.1	152 to 212
2-3	5.1 - 7.6	152 to 201
3-6	7.6 - 15.2	143 to 201
6 - 10	15.2 - 25.4	131 to 201
10 - 19	25.4 - 48.2	131 to 201

Continuously Cast Iron

G2 - Highly Pearlitic Gray Iron

 This specification covers a dense fine-grained gray iron produced by the continuous cast process. The "highly pearlitic" structure is developed by alloy additions to the electrically melted base iron. This material is suitable for applications where higher strength irons requiring good wear resistance and response to heat treatment are required.
 Hydraulic-pump rotors, gear blanks, rams, machine-tool gibs, foundry patterns plates, ways, collets, etc.
This iron can be hardened by fast methods, such as flame and induction hardening, in addition to conventional quench and temper methods. Gray Iron can be oil quench hardened from 1575°F (855°C) to a Rockwell "C" 50 minimum on the outside diameter of the bar. The inside diameter hardness will be less than Rockwell "C" 50. Lower quench hardnesses on the inside diameters are a result of larger graphite flakes and not a loss of matrix hardness.
 Machining characteristics of this alloy are excellent. Although the hardness of the material is generally higher than found in static castings, the close grain structure, its freedom from inclusions, hard spots and porosity permit superior machining speeds.

	Mechanical Properties - Hardness
Continuously Cast Iron G2 - Highly Pearlitic Gray Iron	- Hardness properties listed are minimum, maximum across the bar. Hardness for shapes other than rounds will be supplied on request.

Bar Dia - inches	Bar Dia - centimeters	BHN min to max
3/4 - 1 1/2	1.9 -3.8	207 to 285
1 1/2 - 3	3.8 - 7.6	207 to 277
3-6	7.6 - 15.2	197 to 269
6 - 10	15.2 - 25.4	183 to 269
10 - 19	25.4 - 48.2	183 to 269

Continuously Cast Iron 80-55-06 Partially Pearlite Ductile Iron

Continuously Cast Iron 80- 55-06 Partially Pearlite Ductile Iron		
Characteristics	matrix of ferrite provides higher of ferritic grade of machinable with will be similar to	ductile iron will contain nodular graphite in a and pearlite. The pearlite/ferrite structure wear resistance and strength when compared to a ductile iron. This material will be readily good surface finishes. Tensile and yield strengths AISI 1040 steel in the as-rolled condition. This imilar to ASTM A536 grade 80-55-06.
Typical Applications	Fluid Power: Machinery: Transportation: Pump and	Cylinder Blocks, Gerotors, Manifolds, Pistons, Glands, Rotors, Valve Bodies. Bushings, Chain Sheave Rollers, Chuck Bodies, Die Blocks, Gears, Gear Racks, Pulleys, Press Rams, Rotary Tables, Tie Road Nuts, Ways, Barrel Rollers (cement truck), Flywheels, Pile Drivers, Pulleys, Rams. Pulleys, Gears, Rail Spacers.
	Compressor: Steel Mill:	Gears, Housings, Liners, Pistons, Rotary Screws. Guide Rolls, Pinch Rolls, Runout Table Rolls.
	Miscellaneous:	Disamatic Pouring Rails, Dies, Pattern Plates, Core Boxes, Grinding Rolls, Mill Liners.
Typical Heat Treatment	to a Rockwell C diameter hardne hardnesses on th nodules and not	can be oil quench hardened from 1600°F (885°C) 50 minimum on the outside of the bar. The inside ess will be less than Rockwell C50. Lower quench be inside diameters are a result of larger graphite a loss of matrix hardness. Typical Jominy end a are shown in the section on Heat Treating.
Mechanical Properties	specimen taken - Tensile strength - Yield strength (m - Elongation (min)	nin) - 55,000psi

Continuously Cast Iron 100-70-02 Pearlitic Ductile Iron

Continuously Cast Iron 100-70-02 Pearlitic Ductile Iron		02 is a non-inventoried item. A wide variety oes is available by special order
Characteristics	of pearlite with maximizes strer	ductile iron contains nodular graphite in a matrix small amounts of ferrite. The pearlitic structure gth and wear characteristics in a non-alloyed as. This specification is similar to ASTM A536 grade
Typical Applications	Fluid Power: Machinery: Transportation: Pump and Compressor: Steel Mill: Miscellaneous:	Cylinder Blocks, Gerotors, Manifolds, Pistons, Glands, Rotors, Valve Bushings, Chain Sheave Rollers, Chuck Bodies, Die Blocks, Gears, Gear Racks, Pulleys, Press Rams, Rotary Tables, Tie Road Nuts, Ways, Barrel Rollers (cement truck), Flywheels, Pile Drivers, Pulleys, Rams. (also see fluid power) Pulleys, Gears, Rail Spacers, Hubs, Carriers, Camshafts Gears, Housings, Liners, Pistons Guide Rolls, Pinch Rolls, Runout Table Rolls. Disamatic Pouring Rails, Dies,
Typical Heat Treatment	to a minimum h bar. The inside Lower quench h larger graphite Jominy end que	can be oil quench hardened from 1600°F (885°C) ardness of Rockwell C 50 on the outside of the diameter hardness will be less than Rockwell C 50. ardnesses on the inside diameters are a result of nodules and not a loss of matrix hardness. Typical nch test data for 80-55-06 ductile iron are shown a Heat Treating. Similar data applies to 100-70-02.
Mechanical Properties	specimen taken	

Mechanical Properties - Hardness

Continuously Cast Iron 100-70-02 Pearlitic Ductile Iron

- Hardness properties for various diameters are shown in the table below. Hardness properties listed are minimum, maximum across the bar. For rectangles, squares and shapes, the hardness properties will depend on minimum and maximum section thickness and will be supplied on request.

Bar Dia - inches	Bar Dia - millimeters	BHN min to max
01.000 - 20.000	25 - 508	241 to 329

Specialty

Special Products 4140 Mechanical Tubing

Specialty - AISI 4140 MECHANICAL TUBING	- Heavy v	wall, sean	nless all	oy tubing	g is availa	ble upor	n enquiry.
Typical Analysis	С	Mn	Р	S	Si	Cr	Мо
	.38/.4	.75/.0	.35 Max	.04 Max	.15/.3 5	.8/.1	.15/.2 5
Characteristics	cold fin – This pro	ished and l duct is col	hot rolled ld drawn	d surface or hot fin	nical tubing condition ished. Sear ted by a qu	mless allo	y tubing
Typical Applications	– Blast Jo	int					

Specialty - AISI 4140 MECHANICAL TUBING	- Heavy wall, seamless alloy tubing is available upon enquiry.				
Spec	L80/NACE MR-01-75	P110			
Tensile Strength min, psi	80,000	110,000/ 140,000			
Yield Strength min, psi	95,000	125,000			
Elongation (%)	18	-			
Hardness	RC 16/22 HBN 235 max	RC 28/36			
CVN (Ft-lbs min aim)	15	30			
Test Temp (°F)	50	50			

Special Products

Stainless Steel Ornamental Tubing

Specialty - Stainless Steel Ornamental Tubing	- Type 304 Stainless 180 grit finish - Also available in grades 301, 302, 304L, 316, 316L, 321, 409, 430, 434. Other grades available upon request.						
Typical Analysis	С	Mn	Р	S	Si	Cr	Ni
	.8 Max	2.0 Max	.04 Max	.03 Max	1.0 Max	18-20	8-11
Characteristics	 The advantages of this stainless steel tubular product include: High strength to weight ratio Cold working increases yield strength of the original metal Ease of fabrication (bending, flattening, flanging, forming) High corrosion resistance Ease of maintenance Available in a range of surface finishes 						
Typical Applications	 Marine Equipment Restaurant Equipment Food Processing/Meat Packing Medical Automotive Furniture Construction supports, frames and buildings Display cases Racks and carts 						

Special Products Staballoy AG17

Specialty - Staballoy AG17	- For No	on-Magne	tic Dril	ling Coi	nponer	nts	
Nominal Analysis	C	Mn	Cr	N ₂	Si	Мо	
	.03	20	17	.50	.30	.05	
Characteristics	develo critica induce enviro – Stabal excello Mecha Indust length – Stabal	ped for us l elements d stress conments. loy AG17T/ ent resista nical / Mag ry Standard of every c	e under results orrosion M is a punce to genetic punce to sollar. M is ava	onerous in exce cracking urpose d galling us properties perties a	s drilling llent res g in the lesigned nder hig es in acc re consi	g conditionsistance of most agging composing torque cordance estent through the cordance of th	steel specifically ons. Control of co chloride gressive drilling tion offering conditions. with API 7 / oughout the warranty against
Physical Properties	magne Every magne	Collar is te toscope ar om magne	ability rested over 1.005	emains l er its fu 5-4502 d	below 1 ll length ifferent	.005. Hot n using a ial probe	sures that E Spot Guarantee - Foerster 1.068 e and is certified fon — ±0.5
Warranty	year w		ainst cl	nloride i	nduced	stress co	ered with a three rrosion cracking.
Galling	galling auster test te make a pressu	pressure a atic stainle chnique, i and break re of 35 ks	approxiess steen accortests or tests or	mately 7 ls. Using dance w machingen dete	times to a labor tith AST/led conred.	that of the ratory but M G98 pro- nections, This cor	e with critical ne conventional ntton on block' ocedures, and in a critical galling npares with a enitic stainless
Mechanical Properties	compo guarar		ntrol and erties a	d strain pply to	hardeni the full	ng during length of	

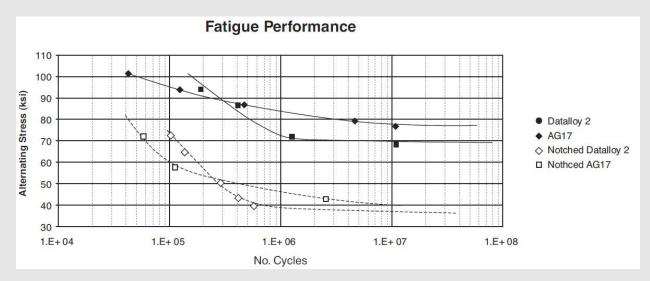
255

Specialty -	Mechanical Properties				
Staballoy AG17	- Test material taken from 1 inch below outer surface or mid-wall (whichever is the smaller value). Tensile test to BS EN 10002 Part 1 or ASTM A370. Impact Tests to BS EN 10045 Part 1 or ASTM E23.				
Drill Collar Outside Diameter	< 6.7/ 8 inches	7 to 11 inches	> 11 inches		
0.2% Proof Stress (ksi)	110	100	90		
Maximum Stress (ksi)	120	110	100		
Elongation %	18	20	20		
Impact Energy (CV)	J60	60	60		

277

277

Brinell Hardness


Specialty - Staballoy AG17	- For Non-Magnetic Drilling	Components			
Stress Corrosion Cracking	 a) Intergranular Resistance to Integranular Stress Corrosion Cracking is achieved by careful control of chemical composition. Freedom from susceptibility is demonstrated by testing to ASTM A262, Practice E. b) Transgranular Staballoy AG17TM has excellent resistance to chloride induced SCC and is suitable for use in most onerous drilling conditions, eg high temperature / high chloride drilling muds. The laboratory data below illustrate the material's excellent corrosion resistance in a variety of test environments. The possibility of cracking increases as stress approaches yield point and for the most arduous conditions, bore surface treatment by the "XL" procedure is recommended to farther resist initiation of stress corrosion cracking 				
	Corrodent	Stress MPa (ksi)	Test Duration (Hours)		
	60% CaCl2 @ 130°C	301 (43.8)	> 5000 (not cracked)		
	Magnesium Chloride mud (20%) @ 115°C	300 (43.5)	> 2000 (not cracked)		
	Saturated NaCl @ 106°C 400 (43.5) > 2000 (not cracked)				
	- (Samples of the constant strain tensile type)				

Special Products Datalloy 2

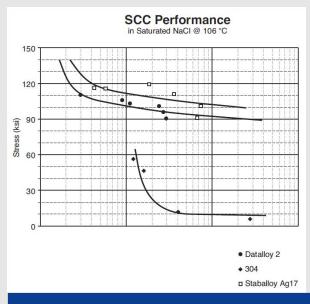
Specialty -Datalloy 2	- an Enhanced (Corrosior	n Resisto	ance No	on-Magr	netic Steel
Typical Analysis	C Mn	Cr	N	Si	Мо	Ni
	.03 15.1	15.3	0.4	.30	2.1	2.3
Characteristics	pitting and galimagnetic drill stabilisers and Datalloy 2TM h Cr-Mn steels, in required. Also corrosion cause The increased affect its resist performance. Datalloy 2TM crequirements of	developed vanic correcting con compress as been d in situation the chemical by coup nickel corrected So omplies, a f API 7. also avai	d to exhi- rosion. It inponents ive servi- esigned ins where istry of I pling to on itent of itress Co	ibit enhinis suita sincludice drill to be use increase Datalloy dissimila Datalloy rrosion imum, t	anced realing MWD pipe. sed in placed correct 2TM entire ar metal y 2TM do Cracking to the metal so the metal	esistance to both use in critical non tools, LWD tools, ace of standard posion resistance is sures that galvanis is resisted. The ses not adversely or its galling echanical propert "condition with a
Structure	 Datalloy 2TM is maximum mag A combination generates the Datalloy 2TM c Forging parame pitting corrosion 	netic perr of contro nigh proof annot be eters are (neability lled hot f strengt hardene carefully	of 1.00 forging hs required by head of the design	05. and colo ired in o at treatr ed to pro	I working ilfield service. nent. oduce optimum
Physical Properties	Modulus of	Elasticity	y		200 GF	' a
joieur i operaco	Poisson's R	atio			0.4	
	Coefficien	t of Therr	nal Expa	nsion	16 x 10	0-6 m/m/°K
	Resistivity				680 µΩ	?mm
	Thermal C	onductivi	ty		0.035	W/m°K
	Density				7.65 g	
	Relative M	agnetic P	ermeabi	lity	1.005	max
Fatigue Performance	the materials u – In rotating ben Datalloy 2TM w	tested at sed are a d Wöhler rith 0.2% p	4000 cycs below. type fat proof str	igue tes	minute. sts, highein excess	The Strength of

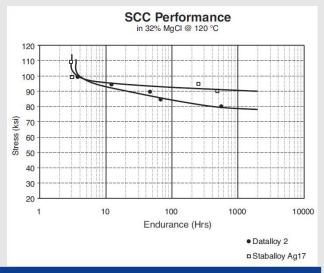
en-(•)(-metals

Specialty -Datalloy 2	Fatigue Performance
Material	0.2% Proof Strength
Datalloy 2TM	105 ksi
Staballoy AG17TM	116 ksi

Specialty -Datalloy 2	Mechanical Properties Standard Strength.	
Size	< 7 inches (Min-Typical)	> 7 inches (Min-Typical)
0.2% Proof Stress (ksi)	110-125	100-115
UTS Stress (ksi)	120-148	110-135
Elongation %	18-33	20-35
Reduction of Area (%)	45-70	50-72
Longl. CVN at RT (J)	60-170	60-190
Hardness (HBN)	285-321	269-302

Specialty -Datalloy 2	Mechanical Properties High Strength.	
Size	< 7 inches (Min-Typical)	> 7 inches (Min-Typical)
0.2% Proof Stress (ksi)	140-148	135-145
UTS Stress (ksi)	150-162	145-160
Elongation %	18-28	20-30
Reduction of Area (%)	45-68	50-70
Longl. CVN at RT (J)	60-130	60-150
Hardness (HBN)	302-350	203-304

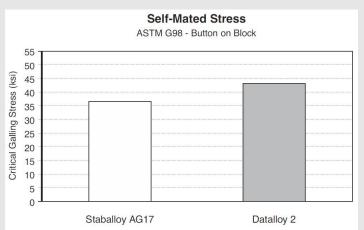

Pitting Corrosion	Pitting is caused by adverse localized conditions. Corrosion rate is dependent on the differential between oxidants in the pit and the supply of oxidants to the area around the pit. Thus highly oxidized muds, or stagnant muds which form deposits that deprive localized area of oxidant, generate more aggressive environments. One widely adopted indicator of pitting resistance is the PREN or pitting resistance equivalent number. This number is a calculation based on chemical analysis, and is commonly accepted as providing a good indication of pitting resistance.
	Higher values indicate increased resistance to pitting corrosion.
	11% Cr Mo 304 (L) Cr-Mn Steels Datalloy 2 12 14 16 18 20 22 24 26 28 30 32



Specialty -Datalloy 2	Mechanical Properties Corrosion
Galvanic Corrosion	- When two dissimilar material come into contact it is possible that a galvanic cell will be set up, promoting corrosion in the least noble element of the couple. The resulting corrosion will usually be localized to the contact area and may be potentially catastrophic. Datalloy 2TM has been specifically designed to counteract this problem and, as the following graph shows, will resist attack even when coupled to pure copper. Galvanic Corrosion Against a Copper Electrode (YW) 14
	Datalloy 2 Standard Cr-Mn 11% Cr Mo Mild Steel
Stress Corrosion Cracking	 Stress corrosion cracking (SCC) is caused by the combined action of stress and a corrosive medium. The stress can be externally applied or can anise from residual stresses introduced during manufacture. It is also possible for loading and residual stresses to combine, giving a larger actual stress than is applied externally. There are two types of SCC: intergranular and transgranular. a) Intergranular SCC is caused by microstructural, sensitisation of the steel. It has been largely eliminated in modem NMDC manufacture by strict analytical control during ste Material from all Allvac Ltd (Jessop Saville Oilfield Products) collars is tested to ASTM A262 practice E to ensure freedom from sensitisanion. b) Transgranular SCC can occur in the presence of chloride ions when the steel surface is subjected to a tensile stress. Good engineering practice can help to reduce the occurrence of this type of SCC, as can surface treatments which introduce compressive stresses. Hammer peening is an optional treatment available at Allvac Ltd (Jessop Saville Oilfield, Products). It can introduce compressive stresses into the surface of our collars to a depth greater than 0.100". A 3 year warranty against stress corrosion cracking is offered on products treated in this way. The peening treatment also has the benefit of improving fatigue resistance. The possibility of cracking increases as stress approaches yield point and for the most arduous conditions, bore surface treatment by the "XL" procedure is recommended to farther resist initiation of stress corrosion cracking

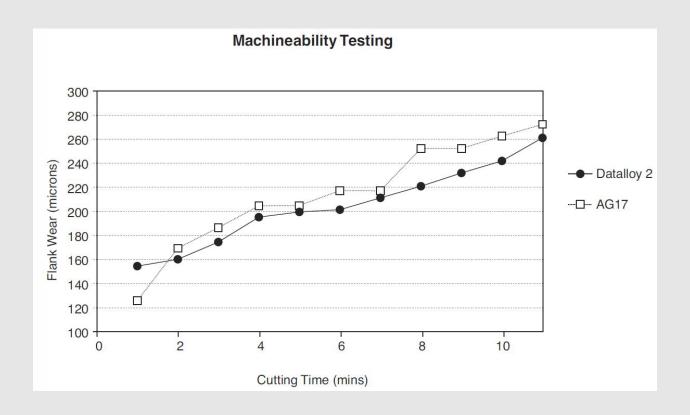
en-(•) (=metals

en-(•)(=metals



Specialty -Datalloy 2

Galling Resistance


 Galling in the oil industry is defined as the seizure of, and damage to, threaded connections on tightening or untightening.
 Tests performed by Jessop Saville have shown that the intrinsic galling resistance of Datalloy 2TM is superior to that of other Cr-Mn steels.

 Standard A.S.T.M. G98 test conditions, contact area = 123mm2, no lubricant 4-1/2" IF connections. Torque applied without lubrication.

Specialty -Datalloy 2 **Self-Mated Stress Galling Resistance** Full Scale Connection Testing 55 50 45 Critical Galling Stress 40 35 30 25 20 15 10 5 0 Staballoy AG17 Datalloy 2 Furthermore, on full-scale make and break tests using a typical proprietary lubricant, galling was prevented at stresses over 50% greater than the recommended make up stress. All collars meet API 7 specified properties and conditions as a **Quality Assurance** minimum standard - Each collar is mechanically tested - Each collar is tested for magnetic 'hotspots' using a Foerster EC Probe. Maximum deflection guaranteed less than ±0.5µT/100mm. - Each collar is ultrasonically examined along its entire length - Certification includes all relevant physical, chemical, mechanical, magnetic and ultrasonic results Lengths of up to 35 feet and diameters from 4 to 9-1/2" inches Supply Forms are supplied as standard, although longer lengths and other diameters may be ordered by arrangement. - Material can be supplied solid, bored, semi-finished or fully machined to drawing. - Datalloy 2TM is usually supplied in the strain hardened condition. - Arrangements can be made to supply an annealed product, but at reduced strength levels. - Components up to 9-1/2" diameter can be supplied on request with guaranteed minimum 0.2% proof strengths of 140 ksi. Impact toughness levels remain high and corrosion properties are similar to that of standard strength material. Datalloy 2 exhibits comparable machinability to Allvac Ltd (Jessop Machinability Saville Oilfield Products) grade Staballoy AG 17TM. The following graph relates measured tool wear to cutting time. Tests were performed at a cutting speed of 90m/min without lubrication, using a Sandvik CG235 insert. Austenitic steels are very ductile when compared to carbon and low alloy steels, so chip formation is far more difficult. Austenitic grades also work harden much more readily. These properties mean that cutting should be very positive and tools should not be allowed to dwell on the surface.

Specialty -Datalloy 2	Machinability - The following carbide tools are recommended, although high-speed steel tooling can be used at a lower cutting speed.						
Operation	Tool Grade	Cutting Geometry	Cutting Speed	Feed Rate			
Rough Turning	GC415	QR	400 ft/min	0.018-0.024 in/rev			
	GC435	QR	200 ft/min	0.018-0.024 in/rev			
Self-Finish	GC415	QM	200 ft/min	0.008-0.018 in/rev			
	GC435	QM	200 ft/min	0.008-0.018 in/rev			
Milling & Drilling Using Inserts	GCA	145 and 190	300 ft/min	0.006-0.008 in/rev			
	GC235	145 and 190	200 ft/min	0.006-0.008 in/rev			

Nickel Alloys

400

ALLOY 400 (UNS N04400)								
Typical Analysis	Ni + Co	С	Mn	Fe	S	Si	Cu	
	63 min	.3 Max	2.0 Max	2.5 Max	.024	.5 Max	28-34	
Characteristics	 Nickel-copper alloy 400 is a solid-solution alloy that can be hardened only by cold working. It has high strength and toughness over a wide temperature range and excellent resistance to many corrosive environments. 							
Typical Applications	 Alloy 400 is widely used in many fields, especially marine and chemical processing. Typical applications are valves and pumps; pump and propeller shafts; marine fixtures and fasteners; electrical and electronic components; springs; chemical processing equipment; gasoline and fresh water tanks; crude petroleum stills; process vessels and piping; boiler feed water heaters and other heat exchangers; and deaerating heaters. 							

	Tensile Properties - Form and Condition - Nominal Room Temperature							
ALLOY 400 (UNS N04400)	Tensile Yield Elonga Strength Strength % 1000 psi 1000 psi		Elongation %	Hardness Brinell (3000 kg)	Hardness Rockwell B			
Rod and Bar								
Annealed	75-90	25-50	60-35	110-149	60-80			
Hot-Finished (except Hexagons over 2 1/8" & Angles)	80-110	40-100	60-30	140-241	75-100			
Hot-Finished Hexagons over 2" and Angles)	75-100	30-55	50-30	130-184	72-90			
Cold-Drawn, Stress- Relieved	84-120	55-100	40-22	160-255	85-20 _c			
Plate								
Hot-Rolled, As-Rolled	75-97	40-75	45-30	125-215	70-96			
Hot-Rolled, Annealed	70-85	28-50	50-35	110-140	60-76			
Sheet								
Annealed	70-85	30-45	45-35	-	65-80			
Cold-Rolled, Hard	100-120	90-110	15-2	-	93 min _a			
Strip Cold-Rolled								
Annealed	70-85	25-45	55-35	-	68 max _a			
Spring Temper	100-140	90-130	15-2	-	98 min _a			
Tube and Pipe, Seamless								
Cold-Drawn, Annealed	70-85	25-45	50-35	-	75 max _a			
Cold-Drawn, Stress- Relieved	85-120	55-100	35-15	-	85-100 _a			
Heat-Exchanger, Annealed	70-85	28-45	50-35	-	75 max _a			
Heat-Exchanger, Stress- Relieved	85-105	55-90	35-15	-	85-97 _a			
Hot-Extruded	-b	- b	- b	- b	- b			
No. 1 Temper (Annealed)	85 max	30-45	45-30	-	73 max _a			
No. 2 Temper (Half Hard)	85-105	55-80	30-10	-	75-97 _a			
No. 3 Temper (Full-Hard)	110-130	90-110	10-3	-	95-27 _c			

ALLOY 400	Tensile Properties - Form and Condition - Nominal Room Temperature							
(UNS N04400)	Tensile Strength 1000 psi	Yield Strength 1000 psi	Elongation %	Hardness Brinell (3000 kg)	Hardness Rockwell B			
Wire-Cold-Drawn								
Annealed	70-95	30-55	45-25	-	-			
No. 1 Temper	85-100	50-75	30-20	-	-			
Quarter Hard	95-120	65-95	25-15	-	-			
Half Hard	110-135	85-120	15-8	-	-			
Three Quarter Hard	125-150	100-135	8-5	-	-			
Full Hard – Spring Temper	145-180	125-170	5-2	-	-			

a. The ranges shown are composites for various product sizes and therefore are not suitable for specification purposes. Hardness values are suitable. For specification purposes providing tensile properties are not also specified.

c. Properties shown are for sizes from 0.032 to 0.250 in diameter. Properties for other sizes may vary from these.

ALLOY 400 (UNS N04400)	Impact Strength (Charpy V-Notch) (ft-lb)								
Temper	75°F	-20°F	-112°F	-310°F					
Hot-Rolled	219	-	213	196					
Cold Drawn, Annealed	216	212	219	212					
Weld as Welded	78	-	-	73					

b. Properties on request.

Nickel Alloy 500

ALLOY 500 (UNS N05500)									
Typical Analysis	Ni + Co	С	Mn	Fe	S	Si	Cu	Al	Ti
	63 min	.25 Max	1.5 Max	2.0 Max	.01 Max	.5 Max	27-33	2.3- 3.15	.3585
Characteristics	greater obtained base, a submice the mark common conditice corrosis. Alloy 5: enviror (3500 programment of the conditice corrosis). The conditice corrosis corrosis. The conditice corrosis. The conditice corrosis.	rece charesteed by a control of the	aracteris Ith and Ith Ith and	stic of all hardnes uminum under colles of Nal proce hardenince of a ept that has a greasome er und to I days of sulfide 11.0), Uking. The specing make oumps in g may on the sumps in g may on the sumps in g may on the sumps in the specimes and the sumps in the sum in the	loy 400 s. The is and tite ontrolle is (Ti, Assing ung or a lloy 500, when eater tenvironmoe resist continus of the corrosi e alloy numaring cour follogs.	with the ncreas anium of decond (AI) are passed to ging. O is subtine the endency nents. It and to uous in the endency nents are as some as some on rate 500 passe servilowed	ne added ed proper to the nicitions so precipitar effect prostantially age-hardy toward of a sour-symmersion cidic and ens of age tightly rom 28 toes in high rticularly	advanterties arckel-copthat ted throecipitation as as a language of the ted throecipitation as a language of the ted throecipy suitable agnanting, but	pper pughout ion is ralent to urated pH's lened nt black ty sea ble for or slow-
Typical Applications		blades		apers; o	oil well	drill co	ollars and		

ALLOY 500	Mechanical Properties - Form and Condition - Nominal Ranges								
(UNS N05500)	Tensile Strength 1000 psi	Yield Strength 1000 psi	Elongation %	Hardness Brinell (3000 kg)	Hardness Rockwell				
Rod and Bar									
Hot-Finished	90-155	40-110	45-20	140-315	75B-35C				
Hot-Finished, Aged _b	140-190	100-150	30-20	265-346	27-38C				
Hot-Finished, Annealed	90-110	40-60	45-25	140-185	75-90B				
Hot-Finished, Annealed & Agedb	130-155	85-120	35-20	250-315	24-35C				
Cold-Drawn, As- Drawn	100-140	70-125	35-13	175-260	88B-26C				
Cold-Drawn, Aged _b	135-185	95-160	30-15	255-370	25-41C				
Cold-Drawn, Annealed	90-110	40-60	50-25	140-185	75-90B				
Cold-Drawn, Annealed & Aged _b	130-190	85-120	30-20	250-315	24-35C				
Sheet, Cold-Rolled,									
Annealed	90-105	40-65	45-25	-	85B Max				
Strip, Cold-Rolled									
Annealed	90-105	90-105	90-105	-	85B max				
Annealed and Aged _b	130-170	130-170	130-170	-	24C min				
Spring Temper	145-165	145-165	145-165	-	25C min				
Spring Temper and Aged _b	170-220	170-220	170-220	-	34C min				
Tube and Pipe Seamless									
Hot Finished	-c	-c	-c	-c	-с				
Cold-Drawn, Annealed	90-110	90-110	90-110	90-110	90-110				
Cold-Drawn, and Aged $_{\mbox{\scriptsize b}}$	130-180	130-180	130-180	130-180	130-180				
Cold-Drawn, As-Drawn	110-160	110-160	110-160	110-160	110-160				
Cold-Drawn, As-Drawn and Aged _b	140-220	140-220	140-220	140-220	140-220				
Plate									
Hot Finished	90-135	90-135	90-135	90-135	90-135				
Hot Finished and Aged _b	140-180	140-180	140-180	140-180	140-180				

ALLOY 500 (UNS N05500)	Tensile Properties - Form and Condition - Nominal Room Temperature								
	Tensile Strength 1000 psi	Yield Strength 1000 psi	Elongation %	Hardness Brinell (3000 kg)	Hardness Rockwell B				
Wire-Cold-Drawn									
Annealed	80-110	80-110	80-110	80-110	80-110				
Annealed and Aged _b	120-150	120-150	120-150	120-150	120-150				
Spring Temper	145-190	145-190	145-190	145-190	145-190				
Spring Temper, Aged _b	160-200	160-200	160-200	160-200	160-200				

a. The ranges shown are composites for various product sizes and therefore are not suitable for specification purposes.

b. Nominal properties for material age-hardened to produce maximum properties.

c. Properties on request.

d. Properties shown are for sizes 0.0625-0.250-in. diameter. Properties for other sizes may vary from these.

Nickel Alloy

C-22 Corrosion Resistant - Hastelloy®

ALLOY C-22 (UNS NO6022)		TELLO` ationa		d HAYN	ES® aı	re regi	stered	trader	narks (of Hayr	nes	
Nominal Analysis	Ni	Co	Cr	Мо	W	Fe	Si	Mn	С	٧	Р	S
	Bal	2.5*	22	13	3	3	.08*	.5*	.01*	.35*	.02*	.01*
Characteristics	*Maximum Ni-22Cr-13Mo-3W-3Fe alloy with better overall corrosion resistance and versatility than any Ni-Cr-Mo alloy today. Outstanding resistance to localized corrosion, stress corrosion cracking and oxidizing and reducing chemicals.											
Product Forms	stri – Wro	p, bill ought	et, b	alloy Car, wire of this ion under	e, cov s allo	vered y are	electr furnish	odes, ned in	pipe a	and tu	bing.	
Corrosion Resistance	mol oth allo out cor aqu nitr allo Bec are - HAS vari oxid solu acid pre- suit	lybder er Ni- eys C-2 standir rosion leous (ic acie y C-2 iause (likely sTELL(iety of dizers utions ds, acc sTELL(cipita	num a Cr-Mo 276 and and a crace media d or co 2 has of thin to on DY® a f chen such (orga etic a DY® a tes in	alloy Colloys who alloys who alloys alloys and C-4 sistance king. It is included a sincluded as versa accur or alloy Comical plants and an included and an included alloy Colloys the work check the work alloy Colloys the work check alloy Colloys the work alloy Colloys the work check alloy Colloys the work check alloy Colloys the work check alloys the work check alloys the work alloys the work check alloys the work alloys the wo	ith be avail and He to pe has eding was eding was eding tility in more eding tility aroces de and the edd he eld he eld he	tter of able to able to the terminal transfer of the terminal transfer	verall today, S alloy g, crevent relationine the chlot tance to the user of the chlot tance to the chlot tance the forest	corro include No. (ice consistant and no ride ice to red ed wh plants al rese ents, i prides rine, and t matio I zone	sion reding H ding H ding H ding H f f f f f f f f f f f f f f f f f f f	esistar ASTEL -22 all on and oxidizi es con lso, H aqueo upset" e to a ng str contar c and a olutio rain-b makir	LOY® loy ha stress ing tainin ASTEL bus me condi wide ong ninate acetic ns. ounda ng it	s s- g LOY® edia. tions
Fabrication	furr spe hea que forr or i – For colo goo	nished cified ting a enchin med sl nstall ming: d form d duc	in the table. The table	nt: Wr e solute standa 0°F (11 rts whi be sole ™ alloy s the p it can	tion hard so 121°C ch ha ution has e referr be ea	eat tr lution) follove be heat- excell ed mo asily o	eated i, heat owed b en hot treate ent for ethod cold-wo	condi -treat by rap form d pric rming of for orked	tion u ment id air- ed or s or to fi chara ming. . The a	nless of consist cooling severe nal fa cteris Becau alloy is	othervets of g or welly collected bricatics are stiffes stiffes stiffes	vise vater d ion id its er

required during cold forming. More information, see H-2010 publication.

ALLOY C-22 (UNS NO6022)	- HASTELLOY® and HAYNES® are registered trademarks of Haynes International, Inc.
Applications	 Some of the areas of present or potential use for C-22 alloy are: Acetic Acid/Acetic Anhydride Cellophane Manufacturing Chlorine Spargers Chlorination Systems Circuit Board Etching Equipment Complex Acid Mixtures Fans and Blowers Galvanizing Line Equipment Gas Scrubber Systems Geothermal Wells HF Furnaces Incineration Systems Nuclear Fuel Reprocessing Pesticide Production Phosphoric Acid Applications Pickling System Components Plate Heat Exchangers Selective Leaching Systems SO2 Cooling Towers Sulfonation Systems Tubular Heat Exchangers
Field Test Program	 Samples of C-22 Alloy are readily available for laboratory or inplant corrosion testing. Analysis of corrosion resistance of the tested material can also be performed and the results provided to the customer as a free technical service. Try testing HASTELLOY® alloy C-22.
Specifications	- HASTELLOY® alloy C-22 is covered by ASME Section VIII, Division 1. Plate, sheet, strip, bar, tubing, and pipe are covered by ASME specifications SB-574, SB-575, SB-619, SB-622 and B-626 and by ASTM specifications B-574, B-575, B-619, B-622, and B-626. DIN specification is 17744 No. 2.4611 (all forms), TUV Werkstoffblatt 424 (all forms).

en-(-) (-metals

	·	Tensile Properties - Form and Condition - Average tensile data, solution heat- treated								
ALLOY C-22 (UNS NO6022)	Test Temp °F (°C)	Ultimate Tensile Strength Ksi	Yield Strength at 0.2% offset, Ksi	Elongation in 2 in. (50.8 mm), percent						
Sheet	Room	116	59	57						
0.0280125 in. (0.71-3.2mm) thick	200 (93)	110	54	58						
	400 (204)	102	44	57						
	600 (316)	98	42	62						
	800 (427)	95	41	67						
	1000 (538)	91	40	61						
	1200 (649)	85	36	65						
	1400 (760)	76	35	63						
Plate	Room	114	54	62						
1/4"-3/4" in. (6.4-19.1mm) thick	200 (93)	107	49	65						
	400 (204)	98	41	66						
	600 (316)	95	36	68						
	800 (427)	92	35	68						
	1000 (538)	88	34	67						
	1200 (649)	83	32	69						
	1400 (760)	76	31	68						

ALLOY C-22 (UNS NO6022)	- Average impac - V -Notch Impac	Strength Properties - Condition - PLATE - Average impact strength - V - Notch Impact Strength Room Temperature - 320°F (-196°C)								
	Koom Tempera	ture -320 F (-1	96 C)							
Condition	ftlb	J	ftlb	J						
Heat-treated at 2050°F (1121°C) Rapid Quenched	260*	353*	54	351*						
Aged 100 hrs. at: 500°F (260°C)	-	-	259*	351*						
Aged 100 hrs. at: 1000°F (538°C)	-	-	259*	351*						
Aged 1000 hrs. at: 1000°F (538°C)	-	-	87*	118*						

^{*}Specimens did not break

Nickel Alloy

C-276 Corrosion Resistant - Hastelloy®

ALLOY C-276 (UNS N10276)	- HASTELLOY® and HAYNES® are registered trademarks of Haynes International, Inc.											
Nominal Analysis	Ni	Co	Cr	Мо	W	Fe	Si	Mn	С	٧	Р	S
	Bal	2.5*	14.5 16.5	15- 17	3- 4.5	4-7	.08*	1*	.01*	.35*	.025	.01*
Characteristics	*Maximum Ni-1 6Cr-1 6Mo-6Fe-4W alloy, a highly versatile corrosion-resistant alloy. Excellent (N10276) resistance to oxidizing and reducing corrosives, acids, and chlorine-contaminated hydrocarbons.											
Product Forms	 HASTELLOY® alloy-276 is available in the form of plate, sheet, strip, billet, bar, wire, covered electrodes, pipe and tubing. Available in Wrought Form 											
Corrosion Resistance	- HAS allo resi of a afte the affe app - Allo bot C-2 mul - HAS of c ferr inor sear syst chlo exc oxic few	otelloy that istant istant illoy Cer wel forma ected olication of C-2 h oxid 76 car itipurp otellor chemic cancer ganic water cems b oride i ellent dizing mater	ing Cor DY® all t is ger alloy a t in that ding an ation of zone, ons in 76 has lizing a n be us bose pl DY® all cal prod d cupri), chlo and b because ions er a resist atmoserials to behoria	loy C- nerally availal at it us nd has of grai thus n the as outst and re sed wh ants. loy C- ocess e c chlo orine, rine so e of it ance of phere hat w	276 is / considered of the con	a nick dered loy C-doesn'y imprinted congresses excended and a sexual ments of the congresses excended and a sexua	the molecular the molecular to the molecular	lybder ost ve an implet to be abrical tates or mo al residence to be abrical tated acids, in fluence to be a colors.	num-chersatile proved esolution the st cher alized of its vere like stance strong media acetice gas co sulfur Alloy on crace. It is a	e corrolle corros This a weld mical corros ersatilly to a vocidiza (organical composition of the composition	im wro	rsion ated esists d to loy or in ariety ch as and and on and and

ALLOY C-276 (UNS N10276)	- HASTELLOY® and HAYNES® are registered trademarks of Haynes International, Inc.
Fabrication	- HASTELLOY® alloy C-276 can be forged, hot-upset, and impact extruded. Although the alloy tends to work-harden, it can be successfully deep-drawn, spun, press formed or punched. All of the common methods of welding can be used to weld HASTELLOY® alloy C-276, although the oxy-acetylene and submerged arc processes are not recommended when the fabricated item is intended for use in corrosion service. Special precautions should be taken to avoid excessive heat input. Detailed fabricating information is available in the booklet, "Fabrication of CABOT™ Corrosion-Resistant Alloys". Ask for booklet H-2010.
Heat Treatment	 Wrought forms of HASTELLOY® alloy C-276 are furnished in the solution heat treated condition unless otherwise specified. Alloy C-276 is normally solution heat treated at 2050°F (1121°C) and rapid quenched. Parts which have been hot formed should be solution heat-treated prior to final fabrication or installation, if possible.
ASME Boiler and Pressure Vessel Code	 HASTELLOY® alloy C-276 plate, sheet, strip, bar, tubing and pipe are covered by ASME specifications SB-574, SB-575, SB-619, SB-622 and SB-626 under UNS number N10276.

ALLOY C-276 (UNS N10276)	Strength Properties - Condition - PLATE - Average impact strength - U - Notch Impact Strength Room Temperature -320°F (-196°C)									
Condition	ftlb									
Heat-treated at 2050°F (1121°C) Rapid Quenched	263*	357	-							
	500°F (260°C)	250	339							
Aged 100 hrs. at:	1000°F (538°C)	96	130							
Aged 1000 hrs. at:	1000°F (538°C)	64	87							
	Weld (top)	88	119							
As-Welded:	Weld (bottom)	86	117							
	Heat-affected zone	160	217							

^{*}Five of six specimens did not break.

en-(-) (-metals

ALLOY C-276 (UI	NS N10276)		Tensile Properties - Form and Condition - Average tensile data							
Form	Condition	Test Temp °F (°C)	Ultimate Tensile Strength Ksi	Yield Strength at 0.2% offset, Ksi	Elongation in 2 in.(50.8 mm), percent					
Sheet,	Heat-treated at	Room	114.9 (792)	51.6 (356)	61					
0.078 in	2050°F (1121°C)Rapid	400 (204)	100.6 (694)	42.0 (290)	59					
(02.0mm) thick	Quenched	600 (316)	98.8 (681)	35.9 (248)	68					
		800 (427)	94.3 (650)	32.7 (225)	67					
Sheet,	Heat-treated at	400 (204)	101.0 (696)	39.9 (275)	58					
0.094	2050°F (1121°C) Rapid	600 (316)	97.6 (673)	33.5 (231)	64					
	Quenched	800 (427)	93.5 (645)	29.7 (205)	64					
Sheet,	(1121 C) Rapid	400 (204) ¹	100.8 (695)	42.1 (290)	56					
0.063 to0.187		600 (316) ²	97.0 (669)	37.7 (260)	64					
in. (1.6 to 4.7mm) thick		800 (427) ²	95.0 (655)	34.8 (240)	65					
,		1000 (538) ²	88.9 (613)	33.8 (233)	60					
Plate,	Heat-treated at	400 (204)2	98.9 (682)	38.2 (263)	61					
3/16" to 1 in.	2050°F (1121°C) Rapid	600 (316) ²	94.3 (650)	34.1 (235)	66					
(4.8 to 25.4mm) thick	Quenched	800 (427)2	91.5 (631)	32.7 (225)	60					
		1000 (538) ²	87.2 (601	32.8 (226)	59					
Plate,	Heat-treated at	Room	113.9 (785)	52.9 (365)	59					
1 in. (25.4mm)	2050°F (1121°C) Rapid	600 (316)	96.3 (664)	36.2 (250)	63					
thick	Quenched	800 (427)	94.8 (654)	30.5 (210)	61					
Sheet,	Cold-Reduced	Room	116.9 (806)	63.0 (434)	67					
0.094 in	0 percent	Room	129.7 (894)	92.2 (636)	48					
(2.4mm) original (thickness	10 percent	Room	148.1 (1021)	129.1 (890)	26					
	20 percent	Room	169.8 (1171)	157.1 (1083)	15					
	30 percent	Room	193.8 (1336)	182.9 (1261)	9					
	40 percent	Room	210.1 (1449)	195.4 (1347)	7					
	50 percent	Room	116.9 (806)	63.0 (434)	67					

Special Products Tool Steels

Introduction

Encore Metals and its predecessors have been supplying steels to Western Canada since 1892. In the early days, stocks mainly consisted of mining and tool steels which were supplied directly to the mines and logging camps. Gradually the range of steels was extended to include alloy machinery and spring steels and shortly before World War II very small quantities of stainless steel. These were probably the first such inventories in Vancouver, British Columbia.

Tool Steels are a category of steels used to shape, cut and form an extremely wide variety of metals and other materials. The first known use of iron for tools dates back at least 6000 years. The fact that tools made from iron could be made harder by heating and quenching in water was known about 3000 years ago. Heating of iron in the solid state in contact with carbonaceous materials to produce hard tools was an art employed by blacksmiths and metal workers through the Dark and Middle-Ages. It was not until 1740 that Sheffield steelmakers used a crucible melting process to produce iron carbon alloys of more homogeneous nature; these were similar to the water hardening steel, type W1 grade, produced today. It was in the mid-19th century that the benefits of alloy elements such as manganese, vanadium and tungsten became apparent, although the alloying was often accidental due to the coincidental deposition of these other elements in an iron ore body. At the turn of the century an understanding of alloying benefits commenced which, as more alloying elements became available, led progressively to controlled steelmaking additions of manganese, vanadium, tungsten, cobalt, chromium, nickel and molybdenum. This led to the evolution of today's range of specialized tool steels for cold and hot working of metals, molding plastics, as well as many other special purposes. 2011

Special Products

AISI 01

Specialty - AISI 01 Cold Work Grades Tool Steels	- Rounds,	Flats, I	Plates,	Drill R	od, Pro	ecisior	n Ground	l Flats
Typical Analysis	С	Mn	Cr	٧	W			
	.95	1.1	.6	.1	.6	_		
Characteristics	– Good edg – High hard				ion in H	eat-Tr	eating.	
Typical Applications	BlankingMeasurin		_				•	
Typical Heat Treatment	Soft annealing Cooling 740-770 °C			oling Fu	urnace		lardness H nax. 230	НВ
	Hardening from 780-8		or hot 0-220°C		h Hardness after quenching in HRC 64			
	Temperino	3	°C	1	00	200	300	400
			HR	C 6	54	62	57	53
Property Tolerances	– Standard	d Tolera	nces - L	ength:	36 inch	nes		
	AISI 01 G	round a	nd Poli	shed [Orill Ro	d		
	Size Ran	ge			+/-			
	2.000 to .	500			.00	01		
	.499 to .1	25			.00	005		
	.124 and	less			.00	003		
	Precision	Groun	d Flat S	tock				
	Thickness	3				001		
	Width				Up	to 6"	+ .005/0	000
							o 8" + .00	8/000
	Length				+ .	250" -	.000"	

Special Products - Tool Steels

AISI A2, AISI D2

Specialty - AISI A2,										
Typical Analysis		С	Cr	Mc	١ ١	/				
		1.0	5.3	1.1	0	.2				
Characteristics	 Higher hardenability Very low distortion in heat treatment, high wear resistance and toughness 									
Typical Applications	 Blanking and forming dies Cold pilger mandrels, Cold coining dies, Punches, shear blades 									
Typical Heat Treatment		oft annea 00-840°	_		Coolir	g Furna	ace	Hardn max.	ess HB 231	
		Hardening from 930-970°C			Oil or 500-5	hot ba	th		ess afte hing in	- -
	Te	emperin	g	°C	100	200	300	400	500	600
			ı	HRC	63	62	59	57	59	52

Specialty - AISI D2,										
Typical Analysis		С	Cr	Mo)	٧				
		1.55	12	.7	· 1	1.0				
Characteristics	 Highest wear resistance combined with good toughness Best edge holding quality and dimensional stability after tempering 									
Typical Applications	 Thread Rolling dies, Cold extrusion tools Blanking and forming dies, precision blanking dies Circular Shear Blades, Deep drawing tools 									
Typical Heat Treatment		oft annea	_		Cooli	ng Fur	nace	Hardr max.	ness HB 250	
		Hardening Oil or hot b from 1000-1050°C 500-550°C		ath		ness afte ching in				
	T	empering	g	°C	100	200	300	400	500	600
				HRC	63	61	58	58	58	50

Special Products - Tool Steels

AISI S7, AISI H13 and H13 ESR

Specialty - AISI S7										
Typical Analysis		С	Cr	Mo)					
		.5	3.25	1.4	4					
Characteristics	Most commonly used shock resisting tool steelVery good toughness with medium hardenability									
Typical Applications		Trimmin Hammer	_			Shear Bla	ides, Cl	nippers,		
Typical Heat Treatment		oft anne 15-845 °	_		Cooli	ng Furna	ce	Hardn 187-22	ess HB 23	
		ardenin om 925			In air	or oil			ess afte hing in	
	Т	emperir	ıg	°C	100	200	300	400	550	575
				HRC	59	57	56	56	52	45

Specialty - AISI H13 and H13 ESR	- Hot	Work	Grade:	S						
Typical Analysis		С	Si	Cr	Мо	٧	_			
	.4	40	1.0	5.3	1.4	1.0				
Characteristics	- Good	d thern	nal con	ductivi	, hot we ty and r due to a	esistan	ice to h	ot crac	king	
Typical Applications	dies – Meta – Forg	al extru ing Die	usion to	ools for lds, Wo	Work T process orms and ESR is	sing ligh d Cylind	nt meta ders for	als		
Typical Heat Treatment		anneali 800 °C	ing	Coc	oling Fu	rnace		ardness ax. 230		
		ening 1020-1	050°C		or hot I 0-500°C	bath	St qu	ardness rength Jenchin mm² 1	after g in HR	
	Temp	pering								
	°C	100	200	300	400	500	550	600	650	700
	HRC	53	52	52	54	56	54	50	42	32
	N/m m²	1850	1790	1790	1910	2050	1910	1670	1330	1020

en-(-) (-metals

Special Products - Tool Steels

AISI M2, AISI P20

Specialty - AISI M2	- F	ligh Spe	eed Ste	els					
Typical Analysis		С	Si	Cr	V	W			
		.90	4.1	5.	1.9	6.4			
Characteristics					eel grade od cutting	e with balanced alloy composition g power			
Typical Applications	 For all Metal for Roughing, Finishing, Twist Drills, Milling Cutters Taps, Broaches, Reamers, Counter-sinks, Chasers Suitable for Cold Forming Tools, Cold Extrusion Rams and Dies 								
Typical Heat Treatment		oft anne	_		1st preheating °C up to approx. 400 in an air circulating furnace				
	8	820-860 °C			2 nd and 3 rd Preheating °C a) 850 b) 850 and 1050				
	Cooling Furnace					lening in a) hot bath 550°C/air l c) air from 1180-1220°C			
					Tempering °C min. two times 530-560				
	Н	ardness	HB 240	-300	Hardn	ess after quenching in HRC 61			

Specialty - AISI P20	- Plastic Mould Steels							
Typical Analysis	С	Mn	Cr	Мо				
	.40	1.5	1.9	.20				
Characteristics	 Quenched and tempered, Hardness as Supplied 280 to 325 HB Excellent machinability due to additional calcium Treatment Good polishability, Suitable for Texturing 							
Typical Applications	– Plastic Pultrus	Injection ion Dies	n Moulds	, Mould I	Frames,	Pressure	Casting	Dies,
Typical Heat Treatment	Soft anr 710-870	_	Co	ooling Fu	rnace	Hard max.	ness HB 235	
		Hardening Oil or hot bath from 840-870°C 180-220°C		Stren	ness or togth afte ching in m ² 1730	r		
	Temper	ing						
	°C	100	200	300	400	500	600	700
	HRC	51	50	48	46	42	36	28
	N/mm²	1730	1670	1570	1480	1330	1140	920

Special Products - Tool Steels

P20 + S, 420 and 420 ESR

Specialty - AISI P20 +S	- Plastic	Mould (Grades			
Typical Analysis	С	Mn	Cr	Мо	S	
	.40	1.5	1.9	.20	.05	
Characteristics	 Hardness as supplied 280-325 BH Improved machinability to P20 with good polishability 					
Typical Applications	Plastic Moulds, Mould Frames and Pressure Casting DiesSleeves of Recipients					
Typical Heat Treatment	– Refer t	o Informa	ation fo	r P20		

Specialty - AISI 420 and 420 ESR	- Plastic Mould G	rades	
Typical Analysis	C Cr .42 13		
Characteristics	 Good machinabili 	nce plus good polishabili ty due to the additional ations 420 ESR is suggest	calcium treatment
Typical Applications	 Moulds for proces 	ssing corrosive plastics	
Typical Heat Treatment	Soft annealing 760-800 °C	Cooling Furnace	Hardness HB 230
	Hardening From 1020-1050°C	In oil or hot bath 500-550°C	Hardness after quenching HRC 56
	Tempering °(100 200 300	400 500
	HI	RC 56 55 52	51 52

Machining Allowance

When purchasers order hot rolled, forged, cold drawn or thermally treated products that are to be machined, it is necessary to make adequate allowances to remove surface decarburization by specifying appropriate larger sizes when ordering. It is essential that the allowance be observed when removing surface metal:

Diameter Allowance Over Finished Size	
Up to 5/8" (16 mm) Incl.	.032" (0.80 mm)
Over 5/8" (16 mm) to 7/8" (22 mm) Incl.	.042" (1.07 mm)
Over 7/8" (22 mm) to 1" (25 mm) Incl.	.046" (1.17 mm)
Over 1" (25 mm) to 1 1/8" (29 mm) Incl.	.050" (1.27 mm)
Over 1-1/8" (29 mm) to 1-1/4" (32 mm) Incl.	056" (1.42 mm)
Over 1-1/4" (32 mm) to 1-3/8" (35 mm) Incl.	060" (1.52 mm)
Over 1-3/8" (35 mm) to 1-1/2" (38 mm) Incl.	066" (1.68 mm)
Over 1-1/2" (38 mm) to 2" (50 mm) Incl.	084" (2.13 mm)
Over 2" (50 mm) to 2-1/2" (64 mm) Incl.	104" (2.64 mm)
Over 2-1/2" (64 mm) to 3-1/2" (90 mm) Incl.	144" (3.66 mm)
Over 3-1/2" (90 mm) to 4-1/2" (115 mm) Incl	180" (4.57 mm)
Over 4-1/2" (115 mm) to 5-1/2" (140 mm) Incl.	220" (5.59 mm)
Over 5-1/2" (140 mm) to 6-1/2" (165 mm) Incl.	250" (6.35 mm)
Over 6-1/2" (165 mm) to 8" (200 mm) Incl.	310" (7.87 mm)
Over 8" (200 mm) to 9" (230 mm) Incl.	406" (10.31 mm)

NOTE: These allowances are in addition to normal manufacturing tolerances.

Stainless Steel

Stainless Steel

T-303

Stainless Steel T-303 (UNS S 30300)	- 18-8 Chromium- Nickel Freemachining Stainless Steel - Available mainly in wire and bar form to ASTM A581 and A582							
Typical Analysis	С	Mn	Р	S	Si	Cr	Ni	Мо
	.15Max	2.0Max	.20Max	.15Min	1.0Max	17/19	8/10	.600pt.
Characteristics	A sulphur-bearing chromium-nickel austenitic steel, this grade offers excellent machinability, non-galling properties and good corrosion resistance. It is non-magnetic in the annealed condition and is not hardenable by heat treatment. However, tensile strength and hardness can be increased by cold working. Welding is not recommended for T-03, but if necessary use T-308 electrodes and the welds must be annealed. Machinability is rated at 60% - 100 surface feet per minute							
Typical Applications	 Used almost exclusively for parts requiring machining and primarily in automatic screw machines. Bushings, fittings, shafts, valves, bolts and nuts 							
Corrosion and Heat Resistance		e to the s 370°C in (súlphur c	ontent.	orrosion r It has god e and to	od resista	ance to	scaling

Stainless Steel T-303	Mechanical Properties - T-303 Bar sizes - Typical
(UNS S 30300)	- Please note that ASTM A582 does not specify detailed mechanical pro

- Please note that ASTM A582 does not specify detailed mechanical properties (as above) except that the hardness shall not exceed HB 262. Accordingly mill test certificates will not usually show these details

Spec	H.R. Ann	Ann &CF
Tensile Strength, psi	90,000	100,000
Tensile Strength, N/mm ²	620	690
Yield Strength, psi	35,000	60,000
Yield Strength, N/mm ²	241	414
Elongation (%)	50	40
Reduction of Area (%)	55	50
Hardness	163	229

Stainless Steel T-303 (UNS S 30300)	Mechanical Properties - T-303 Wire Sizes - ASTM A581 specifies tensile strength as follows					
Spec	Cond. 'A' - Annealed	Cond. 'B' - Cold Worked				
Tensile Strength, psi	85,000/125,000	115,000/145,000				
Tensile Strength, N/mm ²	590/860	790/1000				

Stainless Steel T-304, T-304H, T-304L

Stainless Steel T- 304H, T-304L (UNS S30400, S30 S30403)		- 18 - 10 Chromium-Nickel austenitic stainless steel - Available in most forms - sheets, plates & coils to ASTM A240; bar sections to ASTM A276 & A479							
Typical Analysis	T-304	С	Mn	Р	S	Si	Cr	Ni	N
	1-304	.08 Max	2.0 Max	.045 Max	.03 Max	1.0 Max	18/20	8/10.5	.1 Max.
	T-304H	С	Mn	Р	S	Si	Cr	Ni	N
	. 55	.04/ .10	2.0 Max	.045 Max	.03 Max	1.0 Max	18/20	8/10.5	-
		С	Mn	Р	S	Si	Cr	Ni	N
	T-304L	.03 Max	2.0 Max	.045 Max	.03 Max	.75 Max	18/20	8/12	.1 Max.
Characteristics	Perhaps the most versatile and widely used general purpose austenitic stainless steel. It is excellent for forming, drawing and welding, and provides good corrosion resistance without postweld annealing. The extra low carbon analysis of T-304L, which further restricts carbide precipitation during welding permits the use of this steel in corrosive service in the as-welded condition. T-304L is essential particularly where heavier sections are involved. T-304H is a modification with .04/.10 carbon and no nitrogen content. The mechanical test requirements are the same as T-304 but the 'H' type is not normally subject to intergranular corrosion testing. T-304 cannot be hardened by thermal treatment but it does work harden. It is non-magnetic when annealed. Machinability is approximately 45% - 75 surface feet per minute								
Typical Application	ns	 These grades are used extensively in the dairy, beverage, brewing, wine and food industries where the highest degree of cleanliness is of prime importance. Chemical equipment and storage tanks, cryogenic vessels, sinks, saucepans and kitchen equipment, architectural trim, petroleum refinery equipment 							ind chen
Corrosion and Hea Resistance	t	acid, a for hot 900°C	is highly rand resists petroleu in continuould be e	many om m produous sei	organic a ucts. It harvice and	nd inorga as good s 843°C fo	nic chen cale resi r interm	nicals. Ex stance u	xcellent p to

Stainless Steel T-304, T-304H, T-304L (UNS S30400, S30409, S30403)	Mechanical Properties - Bar - Typical at Room Temperature								
Bars	T-304	T-304H	T-304L						
Tensile Strength, psi	85,000	85,000	83,000						
Tensile Strength, N/mm ²	586	586 586 572							
Yield Strength, psi	35,000	35,000	34,000						
Yield Strength, N/mm ²	241	241	234						
Elongation (%)	60	60 60 60							
Hardness	149	149	146						

Stainless Steel T-304, T-304H, T-304L (UNS S30400, S30409, S30403)		Mechanical Properties - Sheet - Typical at Room Temperature								
Sheet	T-304	T-304H	T-304L							
Tensile Strength, psi	84,000	84,000	81,000							
Tensile Strength, N/mm ²	579	579	558							
Yield Strength, psi	42,000	42,000	39,000							
Yield Strength, N/mm ²	290	290	270							
Elongation (%)	55	55 55 55								
Hardness	146 (80)	146 (80)	143 (79)							

en-(-) (-metals

Stainless Steel T-304, T-304H, T-304L (UNS S30400, S30409, S30403)		Mechanical Properties - Plate - Typical at Room Temperature								
Plate	T-304	T-304H	T-304L							
Tensile Strength, psi	82,000	82,000	79,000							
Tensile Strength, N/mm ²	565	565	545							
Yield Strength, psi	35,000	35,000	33,000							
Yield Strength, N/mm ²	241	241	228							
Elongation (%)	60	60 60 60								
Hardness	149 (81)	149 (81)	143 (79)							

Stainless Steel

T-310, T-310S

Stainless Steel T-310, T- 310S (UNS S31000, S31008)	 - 25-20 Chromium-Nickel Heat Resisting Stainless Steel - Available in most forms - Sheets and plates to ASTM A240; bar sections to ASTM A276 								
Typical Analysis	T-310	С	Mn	Р	S	Si	Cr	Ni	
	1 310	.25 Max	2.0 Max	.045 Max	.030 Max	1.5 Max	24/ 26	19 /22	
	T-310S	С	Mn	Р	S	Si	Cr	Ni	
	1-3103	.08 Max	2.0 Max	.045 Max	.030 Max	1.5 Max	24/ 26	19/ 22	
Characteristics	 These are austenitic chromium-nickel stainless steels with excellent oxidation resistance and capable of resisting temperatures up to 1150°C in continuous service. They also provide good resistance to carburizing environments. T-310S is simply a low carbon modification which is to be preferred in welded construction. 								
Typical Applications	Furnace linings,			_	•	_	trays, ove engine rin		
Corrosion and Heat Resistance	 Primarily designed for heat resistance, T-310/T-310S are good to 1150°C for continuous service and offer resistance to 1038°C for intermittent service. They provide good resistance to thermal fatigue and cyclic heating. Excellent corrosion resistance at normal temperatures, with good resistance to carburizing and reducing environments at high temperatures. 								
Mechanical Properties	TypicalTensileYield StElongatiHardnes	Strengt rength - ion - 50	h - 95,00 - 45,000 %	00 psi (65		²)			

Stainless Steel T-316, T-316L, T-316N

Stainless Steel T-3 316L, T-316N	16, T-	- 18-12 steel.	2-3 Chr	omium	n-Nicke	l-Moly	bdenui	m auste	enitic	stainless
(UNS S31600, S31603, S31653)							ets, pla 6 & A47		d coil:	s to ASTM
Typical Analysis	T-316	С	Mn	Р	S	Si	Cr	Ni	Мо	N
	1-310	.08 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	16/18	10/14	2/3	.10 Max
		С	Mn	Р	S	Si	Cr	Ni	Мо	N
	T-316L	.03 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	16/18	10/14	2/3	.10 Max
	T 247N	С	Mn	Р	S	Si	Cr	Ni	Мо	N
	T-316N	.08 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	16/18	10/14	2/3	.10/ .16
Characteristics		 In simple terms, T-316 is a molybdenum bearing T-304; the addition of molybdenum greatly increases its corrosion resistance and its mechanical properties at elevated temperatures. This combination of corrosion resistance and high creep and tensile strength, plus good cold forming and drawing properties makes T-316 suitable for a very wide range of applications. T-316L is a a low-carbon modification which minimizes carbide precipitation during welding and exposure to elevated temperatures in the 425°C/815°C range. It can be used in the aswelded condition. T-316N has a higher nitrogen content than T-316 to increase strength with minimum effect on ductility and corrosion resistance. T-316 is non-magnetic in the annealed condition and cannot be hardened by thermal treatment, but it does work harden. Machinability is approximately 42% - 70 surface feet per minute. T-316 is also available in Pump Shaft quality. 								
Typical Application	ns	fertil	izer and	d pharm	naceutio	cal indu	ustries.	Heat ex	chang	emical, gers, marine components.
Corrosion and Heat Resistance		more resist proce phosp resist resist	commonstance to commons to common	only used the subsection the subsect	ed stain alphur cesistance ad salts, cloric a	less gra ompour e to sul also hy nd hydr up to	ades (bunds used lphuric, ydrogen rofluorid 900°C i	it see Tod in pulp sulphur sulphic cacids.	-317). o and rous a le; bu Excel	nd

Stainless Steel T-316, T-316L, T-316N (UNS S31600, S31603, S31653)		Mechanical Properties - Bar - Typical at Room Temperature								
Bars	T-316	T-316L	T-316N							
Tensile Strength, psi	80,000	75,000	90,000							
Tensile Strength, N/mm ²	552	517	621							
Yield Strength, psi	30,000	30,000	42,000							
Yield Strength, N/mm ²	207	207	290							
Elongation (%)	60	60 60 55								
Hardness	166 (86)	149 (81)	183 (90)							

Stainless Steel T-316, T-316L, T-316N (UNS S31600, S31603, S31653)		Mechanical Properties - Sheet - Typical at Room Temperature							
Sheet	T-316	T-316L	T-316N						
Tensile Strength, psi	84,000	79,000	90,000						
Tensile Strength, N/mm ²	579	579 545 621							
Yield Strength, psi	42,000	38,000	48,000						
Yield Strength, N/mm ²	290	262	331						
Elongation (%)	50	50 55 48							
Hardness	149 (81)	146 (80)	170 (87)						

Stainless Steel T-316, T- 316L, T-316N (UNS S31600, S31603, S31653)	Mechanical Properties - Plate - Typical at Room Temperature								
Plate	T-316	T-316L	T-316N						
Tensile Strength, psi	82,000	78,000	88,000						
Tensile Strength, N/mm ²	585	538	607						
Yield Strength, psi	36,000	35,000	46,000						
Yield Strength, N/mm ²	248	241	317						
Elongation (%)	55	58	50						
Hardness	146 (80)	143 (79)	166 (86)						

Stainless Steel T-316, T-316L, (UNS S31600, S31603,)	- Straii	n Hard	ened B	ar, Cei	nterles	ss Grou	nd		
Typical Analysis	С	Mn	Р	S	Si	Cr	Ni	Мо	N
	.03 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	16/18	10/14	2/3	.10 Max
Characteristics	 Cold drawn, centreless ground. Typical Surface Finish: Clean, bright smooth finish; defect free. Smoother finish than Smooth Turned. RMS Finish: 30 max guaranteed. Straightness 0.0625" in 5 ft. 								
Typical Applications	- Boat : chem		g, cylino Iustries.		s, pulp,	, paper,	chemic	cal and	petro
Size Range Rounds	 	.125 .318 .501 1.000 - 1.500 - 3.500 -	317 500 999 1.499 3.499	- C	in inche 000 to .0 000 to .0 000 to .0 000 to .0 000 to .0	001 0015 002 0025 003			

en-(•)(=metals

Stainless Steel	Physical Properties - Type Condition							
T-316, T-316L, (UNS S31600, S31603,)	Tensile Min, psi (MPa)	Yield Min, psi (MPa)	Elongation in 2" or 50mm	Reduction of area min.%				
316/316LStrain-Hardened	95000	75000	25	40				
2" and under	[650]	[515]						
over 2" to 2 1/2"	90000	65000	30	40				
(50.8 to 63.5mm) incl.	[620]	[450]						
over 2 1/2" to 3 1/2"	80000	55000	30	40				
(63.5 to 88.9mm) incl.	[550]	[380]						
over 3 1/2" to 4"	80000	45000	30	60				
(88.9 to 101.6mm) incl.	[550]	[310]						

Stainless Steel T-317, T-317L

Stainless Steel T-3: 317L (UNS S31700, S31703)	 20-13-4 Chromium-Nickel-Molybdenum austenitic stainless steel. Available in most forms, but owing to low-volume usage not as readily available as T-316. 									
Typical Analysis	T-317	С	Mn	Р	S	Si	Cr	Ni	Мо	N
	1-317	.08 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	18/20	11/15	3/4	.10 Max
	T-317L	С	Mn	Р	S	Si	Cr	Ni	Мо	N
	. 31,2	.03 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	18/20	11/15	3/4	.10 Max
Characteristics		 Essentially similar to T-316; but the increased chromium, nickel and molybdenum content results in better corrosion resistance, higher tensile strength and higher creep strength than T-316. T-317L with .03% maximum carbon content is used to restrict carbide precipitation during welding and in applications where maximum corrosion resistance is required. In fact, for small quantities, T-317 is frequently available only as T-317L. T-317 is non-magnetic in the annealed condition and is non-hardenable by heat treatment. Machinability is 39% - 65 surface feet per minute. 								
Typical Application	S	 Pulp and paper, chemical and pharmaceutical processing equipment and machinery. 						ıg		
Corrosion and Heat Resistance	:	envir	onment	s. Good	l oxidat	ion res		in conti		ne same service to

Stainless Steel T-317, T- 317L (UNS S31700, S31703)	Mechanical Properties - Bar - Typical at Room Temperature		
Bars	T-317	T-317L	
Tensile Strength, psi	85,000	85,000	
Tensile Strength, N/mm ²	586	586	
Yield Strength, psi	40,000	35,000	
Yield Strength, N/mm ²	276	241	
Elongation (%)	50	55	
Hardness	160 (82)	146 (80)	

Stainless Steel T-317, T- 317L (UNS S31700, S31703)	Mechanical Properties - Shee - Typical at Room Temperature	t	
Sheet	T-317	T-317L	
Tensile Strength, psi	90,000	86,000	
Tensile Strength, N/mm ²	621	593	
Yield Strength, psi	43,000	38,000	
Yield Strength, N/mm ²	296	262	
Elongation (%)	45	55	
Hardness	166 (86)	167 (83)	

Stainless Steel T-317, T- 317L (UNS S31700, S31703)	Mechanical Properties - Plate - Typical at Room Temperature	
Plate	T-317	T-317L
Tensile Strength, psi	85,000	82,000
Tensile Strength, N/mm ²	586	565
Yield Strength, psi	48,000	43,000
Yield Strength, N/mm ²	330	296
Elongation (%)	51	55.5
Hardness	166 (86)	167 (83)

Stainless Steel T-410, T-410S

Stainless Steel T-41 410S (UNS S41000, S41008)		- 12% Chromium hardenable martensitic stainless steel. - Available in most forms - sheet and plate to A176 and A240 bars to A276, A479 and A193 Grade B6						
Typical Analysis	T 440		С	Mn	Р	S	Si	Cr
	T-410		.15 Max	1.0 Max	.040 Max	.030 Max	1.0 Max	11.50/ 13.50
	T-410S		С	Mn	Р	S	Si	Cr
			.03 Max	2.0 Max	.045 Max	.030 Max	1.0 Max	18/20
Characteristics		 T-410 is the basic chromium grade in the '400' series. It can be treated by conventional means to develop high strength properties with good ductility. In fact, it is in the heat treated condition that T-410 develops its maximum corrosion resistance, particularly when ground and polished. And when heat treated to HRC 18/22, with double tempering, per NACE MR01-75, resists corrosion in severe sour gas environments. Excellent for highly stressed parts needing moderate heat and corrosion resistance with high strength. T-410S limits the carbon content to .08% max for better weldability, mainly in sheet and plate. T-410 is magnetic in all conditions. It has better machining characteristics than the chromium-nickel grades and is rated at 54% - 90 surface feet per minute. 						
Typical Application	s	 Machine parts, pump shafts, blast joints, blow-out preventers, pistons, valve parts, bolts, bushings, jet engine parts, rifle barrels, hardware, cutlery 						
Corrosion and Heat Resistance		 Resists atmospheric corrosion, mild alkalis and acids, food acids, rural and industrial atmospheres. Resists scaling at temperatures up to 675°C in continuous service. 						
Heat Treatment		- i	 up to 675°C in continuous service. Annealing - Heat to 850°/900°C for 30 min. per inch of section thickness and slow cool. Hardening - Heat to 950°/1000°C and quench in oil, water or air according to section and properties required. Tempering - According to properties required, but the range 400°/580°C should be avoided due to low impact values which result at these temperatures. Double tempered at 660°/640°C for SSC resistance. 					oil, water or air the range values which

en-(-) (-metals

Stainless Steel T-410, T- 410S (UNS S41000, S41008)	Mechanical Properties - T-410 Annealed - Typical		
Spec	Bar	Plate	
Tensile Strength, psi	75,000	70,000	
Tensile Strength, N/mm ²	517	483	
Yield Strength, psi	40,000	35,000	
Yield Strength, N/mm ²	275	241	
Elongation (%)	35	30	
Reduction of Area (%)	68	68	
Hardness	156	149	

Stainless Steel T-410, T- 410S (UNS S41000, S41008)	Mechanical Properties - T-410 Heat Treated - Typical			
Spec	Heat Treated to A276 Cond 'H 21/4"dia.	Heat Treated to A193 Grade B6 - 13/4" dia	Heat Treated to HRC22 max by double tempering at 1150°F	
Tensile Strength, psi	137,900	129,000	100,000	
Tensile Strength, N/mm ²	951	809	-	
Yield Strength, psi	115,300	109,000	80,000	
Yield Strength, N/mm ²	795	752	-	
Elongation (%)	24	22	20	
Reduction of Area (%)	69	71	40	
Hardness	285	269	Rc 20	

Stainless Steel

T-416

Stainless Steel T-416 (UNS S41600)	- 12% Chromium Free-Machining Hardenable Stainless Steel. Available mainly in wire and bar sections to ASTM A581 and A582.					
Typical Analysis	C	Mn	Р	S	Cr	Mo (opt.)
	.15 Max	1.25 Max	.06 Max	.15 Max	12/ 14	.60 Max
Characteristics	of T- 410. for improv such as lov steel is des stainless st minute. T-416 is maresponds to	The additioned machinal wer impact signed for freels. The readding supplication conventions of the conventio	n of phosp bility, but values and ree- machi ating is as ed in the a nal heat tr	horus and results ir poor we ning and high as 9 nnealed reatment otained.	d sulphur in some distility. It is the book of the boo	le range of
Typical Applications	 T-416 is used in all applications demanding the mechanical properties and corrosion resistance of T-410 - plus the free- machining. Pump shafts, pistons, valves, automatic screw machined parts, nuts, bolts, studs. 					
Corrosion and Heat Resistance	 Maximum resistance is obtained by hardened material, ground and polished. Excellent resistance to fresh water, mild alkalis and acids, dry atmospheres, neutral and basic salts. Fair resistance to scaling up to 675°C in continuous service. 					
Heat Treatment	thickness. - Hardening Small secti - Tempering	Cool slowly - Heat to 9 ons may be	in furnace 50°/1000° quenched g to mecha	e. C and que in air. Inical pro	ench large	e sections in oil. quired, but the

Stainless Steel T-416 (UNS S41600)	Mechanical Properties - T-416 Annealed Bar sizes - Typical - Note that ASTM A582 does not specify detailed mechanical properties for T-416 except that in the annealed condition the hardness shall not exceed HB 262.			
Spec	H.R. Ann	Ann &CF		
Tensile Strength, psi	75,000	85,000		
Tensile Strength. N/mm²	517	586		

Tensile Strength, psi	75,000	85,000
Tensile Strength, N/mm ²	517	586
Yield Strength, psi	40,000	50,000
Yield Strength, N/mm ²	276	345
Elongation (%)	30	30
Reduction of Area (%)	60	45
Hardness	155	174

Stainless Steel T-416 (UNS S41600)	Mechanical Properties - T-416 Wire Sizes - ASTM A581 specifies tensile strength as follows			
Spec	Cond. 'A' - Annealed	Cond. 'T' - Intermediate Temper	Cond. 'H' - Hard Temper	
Tensile Strength, psi	85,000/125,000	115,000/145,000	140,000/175,000	
Tensile Strength, N/mm ²	590/860	790/1000	1000/1210	

Stainless Steel

T-316 Pump Shaft Quality (PSQ)

Stainless Steel T-316 Pump Shaft Quality	- This grade is annealed, centreless ground and polished.
Typical Analysis	C Mn P S Si Cr Ni Mo N
	.8 2.0 .045 .030 1.0 16/18 10/18 2/3 .10 Max Max Max Max Max .10
Characteristics	 In simple terms, T-316 is a molybdenum bearing T-304; the addition of molybdenum greatly increases its corrosion resistance and its mechanical properties at elevated temperatures. This combination of corrosion resistance and high creep and tensile strength, plus good cold forming and drawing properties makesT-316 suitable for a very wide range of applications. T-316L is a a low-carbon modification which minimizes carbide precipitation during welding and exposure to elevated temperatures in the 425°C/815°C range. It can be used in the aswelded condition. T-316N has a higher nitrogen content than T-316 to increase strength with minimum effect on ductility and corrosion resistance. T-316 is non-magnetic in the annealed condition and cannot be hardened by thermal treatment, but it does work harden. Machinability is approximately 42% - 70 surface feet per minute.
Typical Applications	 Widely used in the pulp and paper, chemical, petro-chemical, Fertilizer and pharmaceutical industries. Heat exchangers, marine applications, aircraft industry, fittings, architectural components. Pump Shafts.
Corrosion and Heat Resistance	T-316 is more resistant to corrosive conditions than any of the more commonly used stainless grades (but see T-317). Very good resistance to the sulphur compounds used in pulp and paper processing. Good resistance to sulphuric, sulphurous and phosphoric acids and salts, also hydrogen sulphide; but poor resistance to hydrochloric and hydrofluoric acids. Excellent scale resistance at temperatures up to 900°C in continuous service, and up to 850°C for intermittent service.
Mechanical Properties	 75,000 psi minimum tensile strength 30,000 psi minimum yield 35% minimum elongation (in 2") 50% minimum reduction of area (R/A)
Tolerances	- Straightness Tolerance - 0.0015" per foot - Maximum out-of-round - 1/2 total diameter tol. - Diameter Tolerance: Size Tolerance - 875"999" +0/- 0.0020" - 1.000"-1.4375" +0/- 0.0025" - 1.4376"-4.000" +0/- 0.0030"

Stainless Steel

T-416 Pump Shaft Quality (PSQ)

Stainless Steel T-416 Pump Shaft Quality	- This grade is heat treated, centreless ground and polished.
Typical Analysis	C Mn P S Cr Mo (opt.) .15 1.25 .06 .15 12/14 .60 Max Max Max Min 12/14 Max
Characteristics	 T-416 is quite simply described as a free-machining modification of T- 410. The addition of phosphorus and sulphur is responsible for improved machinability, but results in some disadvantages such as lower impact values and poor weldability. However, the steel is designed for free- machining and it is the best of all the stainless steels. The rating is as high as 90% - 160 surface feet per minute. T-416 is mainly supplied in the annealed condition; but it responds to conventional heat treatment and a wide range of mechanical properties may be obtained. It is magnetic in all conditions.
Typical Applications	 T-416 is used in all applications demanding the mechanical properties and corrosion resistance of T-410 - plus the free machining. Pump shafts, pistons, valves, automatic screw machined parts, nuts, bolts, studs.
Corrosion and Heat Resistance	 Maximum resistance is obtained by hardened material, ground and polished. Excellent resistance to fresh water, mild alkalis and acids, dry atmospheres, neutral and basic salts. Fair resistance to scaling up to 675°C in continuous service.
Mechanical Properties	 100,000 psi minimum tensile strength 85,000 psi minimum yield 15% minimum elongation (in 2") 45% minimum reduction of area (R/A) 207-248 Brinell hardness
Tolerances	- Straightness Tolerance - 0.0015" per foot - Maximum out-of-round - 1/2 total diameter tol. - Diameter Tolerance: Size Tolerance - 750"999" +0/- 0.0020" 1.000"-1.4375" +0/- 0.0025" 1.4376"-4.000" +0/- 0.0030"

Stainless Steel 17-4PH, T-630

Stainless Steel 17-4PH, T- 630 (UNS S17400)	marte	nsitic	stainle	ss stee	ર્ય	tation/A ate - AST	ge Harder ⁻ M A564	ning
Typical Analysis	С	Mn	Р	S	Si	Cr	Ni & Cu	Cb+Ta
	.07 Max	1.0 Max	.04 Max	.30 Min	1.0 Max	15/17.5	3.0/5.0	.15/.45
Characteristics	exce resis simp scali good - T-63 solut HB36 be pi mart cracl - See t Conc	llent co tance t le low ng. Par fabric 0 is usu- ion tre 3, and ut into ensite, king. the Dat lition H	orrosion to gallin temper ts may ation ch ally sup ated, b is freque service with lo	resista ig and so ature tr be finis naracter oplied in ut it sho uently he in Condow ow duct	ince, go eizing, reatmer h-mach ristics a n Condi ould be IB 321/ dition'A ility and	ood fatigue easily he he with mined befund is easition 'A', controlled the street of the street bility rat	ue strength at treated hinimal distore harden ily weldable commonly conat it can be the steel structure is usistance to hings of Control of Con	by a short, ortion and no ing. It has e. called e as hard as should never ntempered stress dition A and
Typical Applications	and i	missile es, pul	fittings p and p	and co aper mi	mponei ll equip	nts, mari oment, or		er shafts and s, chemical
Corrosion and Heat Resistance	envii chen	onmer nical, p	nts - a w oulp and	vide var I paper,	iety of dairy a	condition	T-302/304 as in the perocessing 400°C.	troleum,

Stainless Steel 17-4PH, T-630 (UNS S17400)

- 17-4 Chromium-Nickel Precipitation/Age Hardening martensitic stainless steel

-Available mainly in bar and plate - ASTM A564

Heat Treatment

Condition 'A' - Solution treated: Heated at 1038°C (plus/minus 15°) for 30 minutes. Air cool or oil quench. Brinell Hardness 363 max. This treatment is normally at the mill.

Precipitation Hardening or Aging Treatments

- Starting with Condition 'A' material

Condition	
Н 900	1 hour at 900°F (482°C) Air Cool
H 925	4 hours at 925°F (496°C) Air Cool
H 1025	4 hours at 1025°F (552°C) Air Cool
H 1075	4 hours at 1075°F (579°C) Air Cool
H 1100	4 hours at 1100°F (593°C) Air Cool
H 1150	4 hours at 1150°F (621°C) Air Cool
H 1150M	2 hours at 1400°F (760°C) Air Cool then 4 hours at 1150°F (621°C) Air Cool

Heat Treatment to NACE MR0175

 The UNS S17400 precipitation hardening stainless steel is acceptable in SSC service when heat treated to HRC 33 maximum by one of the following procedures:

Procedure 1: Double age at 1150 F (620 C), NACE MR-01-75 (Alternate 1)

- 1. Solution anneal at 1900° F (1040° C) and air cool, or suitable liquid quench, to below 90° F (32° C).
- 2. Harden at 1150° F (620° C) for 4 hours at temperature (32° C) and cool in air.
- 3. Cool material to below 90° F (32° C) before the second hours at temperature and cool in air to below precipitation hardening step.
- 4. Harden at 1150° F (620° C) for 4 hours at temperature and cool in air.

Procedure 2: Double age, NACE MR-01-75 (Alternate 2)

- 1. Solution anneal at 1900° F (1040° C) and air cool, or suitable liquid quench, to below 90F (32° C).
- 2. Precipitation harden at 1400° F (760° C) for 2 hours at temperature and cool in air to below. 90° F (32° C) before second precipitation
- 3. Precipitation harden at 1150 $^{\circ}$ F (620 $^{\circ}$ C) for 4 hours at temperature and cool in air.

Stainless Sto 4PH, T-630 S17400)	(UNS M	echanical Pi Minimum prope	r operties erties per ASTI	M A564			
Spec	H 900	H 925	H 1025	H1075	H1100	H1150	H1150D
Tensile Strength, psi	190,000	170,000	155,000	145,000	140,000	135,000	125,000
Tensile Strength, N/mm ²	1310	1172	1069	1000	965	930	860
Yield Strength, psi	170,000	155,000	145,000	125,000	115,000	105,000	105,000
Yield Strength, N/mm ²	1172	1069	1000	862	793	725	725
Elongation (%)	10	10	12	13	14	16	16
Reduction of Area (%)	40/35	44/38	45	45	45	50	50
Hardness HB(min.)	388	375	331	311	302	277	255
HRC						33 max	

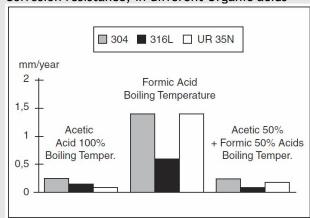
Stainless Steel 2304 Duplex

Stainless Steel - Grade 2304 Duplex - URANUS 35N	- 0	ı 23.04 L	Duplex	stainl	ess steel	with P	REN ≥ 24	
Typical Analysis		С	Cr	Ni	Мо	N	others	
	,	.02	23	4	.2	.1	S= .001	
	,	PR	EN = [C	r %] + 3	3.3 [Mo %]] + 16 [N	l %] ≥ 24	
Characteristics	2 7 7 1 1 1 1	stainless resistance propertie austeniticular Fhe alloy 50°C/+30 remperat particular With its contents,	steel (2 e prope s ie. yid c grade rly for p is part 10°C (-5 ures marly for v luplex n the all	23.04). Prities si eld stre s. This properl icularly 8° F/57 ay also welded microst oy has	The alloy milar to a sength, are allows the y designer suitable 72°F) tember considerations.	UR 35N 316L. Fure twice the design of pressure for approperatured dered, besselow nick distressed	Nickel, Mo free has similar courthermore, its chose of 304/3 her to save wei her to save wei her vessel applications cover e range. Lowe ut need some el and high cho corrosion resis tenitic grades.	rrosion mechanical 16 ght, ications. ring the - r restrictions, romium tance
Standards	– <i>I</i>	EURONOR AFNOR - DIN - W. ASTM - A	Z3 CN Nr 1.4	23.04 362		23.4		
Structure	- T	50 a / 50 950°/105 The micro molybder phases (a 750°/850 to UR 351	y micr 0°C (17 ostructi num con c, x) are °C (138 N grade er heat	ostruct 742/192 ure of l ntaining e prese 32°/150 , when treatm	ure after 22°F). JR 35N du g duplex s nt only af 52°F) tem specifiec	solution uplex is stainless ter 10 h nperatur 1, increa	nized to obtain annealing treater stable constants of the stable constants of	mpared to metallic ime in the er additions so of the
Applications	- F - C - F - S	Pulp and canks Caustic so food induction	paper i olutions istry nels (h vessels	ndustry s, organ igh med (weigh	nic acids (chanical p	orage ta (SCC res oropertion	·	black liquor

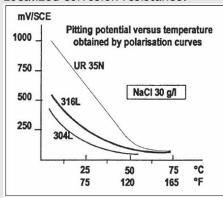
Stainless Steel - Grade 2304 Duplex - URANUS 35N	Mechanical Properties - Tensile Properties (min values) - Values obtained for hot rolled plates (th ≤ 50 mm). UR 35N grade must not be used for a long time at temperatures higher than 300°C (572°F), where precipitation hardening phenomenon occurs.					
Temperature °C	20	100	200	300		
Rp 0.2 MPa	400	330	280	230		
Rp 1.0 MPa	440	365	310	260		
Rm MPa	600	570	530	490		
Temperature °F	68	212	392	572		
YS 0.2% KSI	58	48	41	33		
YS 1.0% KSI	64	53	45	38		
UTS KSI	87	83	77	71		
Elongation %	25	25	20	20		

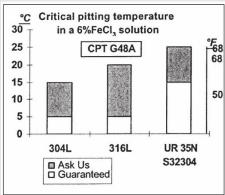
Stainless Steel - Grade 2304 Duplex - URANUS 35N	Mechanical Pro	operties - Tough	nness values (KC	CV min values)
Temperature °C	-50°C	20°C	-60°F	70°F
Single	75 J/cm	90 J/cm	54 J/cm	65 J/cm
Average (5)	90 J/cm	150 J/cm	65 J/cm	87 J/cm

Stainless Steel - Grade 2304 Duplex - URANUS 35N	- Copper addition	perties - Hardness (Ty s may be considered as U It treatment to improve a ties.	R 35N Cu may be	
Average (5)	HV10 180-230	HV10 180-230	HV10 180-230	

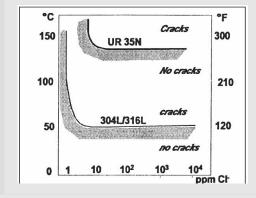

Stainless Steel - Grade 2304 Duplex - URANUS 35N	Physical Properties - Density: 7,800 kg/m3 - 0.28 lb/in ³					
Interval Temperature °C	200 - 100 20 - 200 20 - 300					
Thermal expansion ax10-6K-1	1	13	13.5	14		
Temperature °C	20	100	200	300		
Resistivity (μΩ cm)	80	92	100	105		
Thermal conductivity -1-1(W.m .K)	17	18	19	20		
Specific heat (J.kg-1.K-1)	450	500	530	560		
Young modulus E (GPa)	200	190	180	170		
Shear modulus G (GPa)	75	73	70	67		

Stainless Steel - Grade 2304 Duplex - URANUS 35N	Mechanical Properties Corrosion Resistance
General Corrosion	- Corrosion resistance to stagnant sulfuric acid (0,3 mm/year) °C 100 Boiling Curve 210 75 165 50 316L 25 AISI 3041 %H2SO4


Stainless Steel -Grade 2304 Duplex -URANUS 35N


Mechanical Properties Corrosion Resistance

General Corrosion - Corrosion resistance, in different Organic acids



- Because of its high chromium content (23%) the corrosion resistance properties of UR 35N are almost equivalent to those of 316L.
- Localized corrosion resistance:

- The 23% chromium and 0.1N% additions explain why UR 35N duplex stainless steel behaves much better than 316L grade when considering pitting and crevice corrosion resistance.
- Stress corrosion resistance:

Stress corrosion resistance test results in chloride containing aqueous solutions (8ppm 02) PH = 7, >1000 h, applied stresses higher than the yield strength) show that UR 35N grade outperforms 304L and 316L grades, due to its high chromium additions and low nickel contents. This is a typical feature of duplex stainless steels. UR 45N performs still better than UR 35N in similar conditions.

Stainless Steel - Grade 2304 Duplex - URANUS 35N	Mechanical Properties
Other Corrosion Resistance Properties	 UR 35N duplex stainless steel successfully passes most of the standard IC test procedures such as ASTIVI A262E and C tests. Its corrosion rate in boiling nitric acid (65%) is higher than that of 316L grade. Due to its high yield strength, the alloy performs well in abrasion/corrosion applications.
Processing	 Hot Forming: Hot forming must be carried on in the 1150/900°C (2100/1650°F) temperature range. After forming, a new solution annealing treatment is recommended in the 950/1050°C (2100/1650°F) temperature range to fully restore corrosion resistance properties and mechanical properties. Parts of UR 35N must be supported carefully during heating to avoid creep deformation. Cold forming: UR 35N may be cold formed without any problem. The same equipment as those used for the cold forming of 304 and 316 grades can be used. Due to its higher mechanical properties, including the yield strength, higher stresses are required for cold forming. A final solution annealing heat treatment is also recommended after cold forming in order to restore the mechanical and corrosion resistance properties, as described in 'hot forming'. Descaling: Use the same solutions and pastes as for 304/316L grades. The pickling time will be higher than for austenitic grades due to the corrosion resistance properties of the alloy.
Machinability	 UR35N duplex exhibits improved machinability properties particularly when considering drilling. Its behaviour is equivalent to that of MACH 18.10.2(*) (316L grade with small sulphur additions and special melting process to control the shape and composition of inclusions). Furthermore UR 35N has better corrosion resistance and cleanliness properties as no sulphur additions are necessary. Localized corrosion resistance behaviour is improved. (*) CLI - MACH 18.10.2 is a 316L type grade with improved machinability properties Total length (drilling) versus drilling speed

Welding

0.01

- UR 35N can be successfully welded by the following processes: TIG, manual and automatic- PLASMA, MIG, SMAW, SAW, FCAW.
- The duplex microstructure renders the alloy less sensitive to hot cracking.

30 m/min

- The welding parameters must be optimized to obtain a controlled ferrite level (20-70%). Typical recommended heat inputs are 10-25 KJ/cm with a 150°C (302°F) max interpass temperature. These conditions must be optimized taking into account the thickness of the products and welding equipment (Consult if necessary). We do not recommend pre-welding or postwelding heat treatments. Only complete solution annealing heat treatment may be considered (please, contact us).

Stainless Steel - Grade 2304 Duplex - URANUS 35N	Mechanical Properties Size Range						
Spec	Hot Rolled Plates	Cold Rolled Plates	Clad Plates				
Thickness	5 to 150 mm	2 to 14 mm	6 to 150 mm				
	3/16" to 6"	5/64" to 5/8"	1/4" to 6"				
Width	Up to 3300 mm	Up to 2300 mm	Up to 3300 mm				
	Up to 130"	Up to 90.5"	Up to 130"				
Length	Up to 12000 mm	Up to 8250 mm	Up to 14000 mm				
	Up to 472"	Up to 325"	Up to 551"				

NOTE: This technical data and information represents our best knowledge at the time of printing. However, it may be subject to some slight variations due to our ongoing research programme on corrosion resistant grades. We therefore suggest that information be verified at time of enquiry or order.

Furthermore, in service, real conditions are specific for each application. The data presented here is only for the purpose of description, and may only be considered as guarantees when our company has given written formal approval. Please contact us for further information.

Stainless Steel 2205 Duplex

Stainless Steel - 2205 Duplex (UNS S31803/S32205)	- (ı Dup	lex A	Austeni	tic/ F	erritio	: stain	less ste	eel		
Typical Analysis		Fe	Cr	Мо	Ni	Si	Mn	С	N	Р	S
		Bal	21- 23	2.5- 3.5	4.5- 6.5	1.0 Max	2.0 Max	.03 Max	.08- .2	.03 Max	.02 Max
Characteristics	- I	Ouple: combi	x UNS ning h	th AND S31803 nigh me esistanc	chanic	al stre	ngth, d	luctility			s with
Mechanical Properties	- 9	- T - Y - E - F - C - T - C - T - C - T - C - T - C - T - C - T - C - T - T	rensiled - clonga dardner sion F he co- condition sexcelled ther a common tainle semper sex	Test R 2 - 90,00 65,000 tion - 2 ess - 29 esistan errosion ions of e itic type ent resis acids ar c UNS S3 and otl ularly su ratures on cause ess steel ties. Lil ully suita ly reduce osion R C Chloric c UNS S3 corrosic red to a 17L and nt to st ter and	psi m	min in in Max ance of e, is sulfactors and e for the pittin ailure was austen or hand cids and nce: ess Corresion or control of the pittin ailure was austen or hand cids and nce: ess Corresion or control of the 20 or control or c	F S3180 perior to the d 317L furic, p is is higher in the higher of the dependent of the de	to that stainle shospho nly resis d comper conce oreferer ost conv f chloric ainless s drochlo icals. Cracking nprovec corrosi steels si i grades king in s	of the ess steed ric, nit stant to counds entrational covention des and steeds, or ic acides and counds as a litis	fully els. It h cric, an o aceti . It is ons and orrosion hal aus d other S31803 d and o ance to I pittin types highly	d many c, d n are tenitic d is not other g when 304,

Stainless Steel - 2205 Duplex (UNS S31803/S32205)	- a Duplex Austenitic/ Ferritic stainless steel
Fabrication	 Hot forming is carried out at 1150-950°C. However, it should be borne in mind that the mechanical strength of the material is low at high temperatures. At temperatures below 950°C embrittling can take place on account of the combination of strain and exposure in the sigma phase field. Quench annealing is normally required after hot forming.316, 317L and even the 20Cr-25Ni grades. It is highly resistant to stress-corrosion cracking in sodium chloride, seawater and many other environments. Cold forming owing to the high yield strength of the steel, greater forces are normally required for the cold forming of \$31803/\$332205 than for austenitic steels.
Machining	 High alloy duplex steels, such as S31803/S32205, are generally more difficult to machine than conventional austenitic stainless steels such as 17-12-2.5. Duplex steels have a somewhat different property profile than highly alloyed austenitic stainless steels. The main difference is that duplex grades are relatively easier to machine with high speed steel tools than with cemented carbide tools, compared to austenitic stainless steels with a similar alloy content.
Welding	 Duplex UNS S31803/ S32205 possesses good weldability. The following instructions should be followed: The material should be welded without preheating. The material should be allowed to cool between passes, preferably to below 150°C. The recommended heat input in order to achieve a good balance between ferrite and austenite in the weld is 1.0-2.5 kJ/mm (aim at 30-60% ferrite). The energy input should be adjusted in proportion to the thickness of the material to be welded. A high energy input and slow cooling reduce the amount of ferrite. Duplex UNS S31803/ S32205 can be welded using the following methods: Welding with covered electrodes (SMAW) Gas shielded arc welding such as GTAW (TIG), plasma, GMAW (MIG) and FCW. Submerged-arc welding (SAW) Post weld heat treatment is not normally necessary. In cases where heat treatment is considered, for example for stress relieving, this should be carried out at 1020-1070°C.

Stainless Steel - 2205 Duplex	- a Duplex Auste	enitic/ Ferritic stainless steel
(UNS S31803/S32205)		
Applications	cracking, \$31803 stainless steels for marine scrubbers resistance, \$3180 agitators and oth slurries. Special mention a production of fer where the alloy for the stainless of t	sistance to chloride pitting and stress-corrosion /S32205 is finding wide use in place of austenitic or handling solutions containing chlorides such as in s. As a result of its wear, erosion and corrosion 03/S32205 is particularly suitable for pumps, her critical components handling hot corrosive should be made of its performance in the rtilizer grade phosphoric acid by the "wet" process finds extensive application.
	Chemical Process Industry:	- Equipment Handling Fatty Acids, Terephthalic Acid and Polytheonic Acid, Sulfuric Acid Protection, Tank Internals, Rakes, Fasteners in Uranium Extraction
	Copper Smelting:	-Sulfuric Acid Production, Leaching Area, Precipitators, I.D. Fans, Wet Scrubbers, Tuyere Bars
	Marine:	-Propeller Shaftings, Cutlass Bearings Seals, Rudders, Desalinization Equipment, Pump Parts, Feed Water Heaters, Fasteners for Off-Shore Platform Gauges
	Oil & Gas:	-Injection Pumps, Processes for Treating Crude Oil i.e. Desalting, Desulfurization and Distillation, Mild Sour Gas Wells
	Petrochemical:	-Styrene Monomer Wash Acid Equipment, PVC film Extrusion Dies, Solvent Recovery Absorbers, Low Density Polypropylene Dryer Baffles, Entrainment Separators, Handling Hot Organic Acids i.e. Acetic, Formic, Oxalic Acids With or Without Chlorides Present
	Pollution Control:	-Centrifuges (Waste Water Clarification), Venturi Scrubbers for Sewage Incinerators, SO2 Scrubbers, Roast Gas Scrubbers (Fan and Vessels), Fans for Garbage Incinerators, Sodium Hypochlorite Scrubbers
	Pulp & Paper	-Black Liquor Heater Tubes, Digester Blow Valves, Rotary Feed Valves, I.D. Fans, Brownstock Washers, Digester Strainer Plates, Agitator Assemblies (Bleach Plt Mixer), Cyclone Target Plates, Precipitators, Wet Scrubbers, Pump Parts, Recovery Furnace Boiler Tubes, Bleach Agitator Shafts
	Wet Phosphoric Acid Production	-Digester Agitators, Mixing Tees, Vortex, Piping, Breakers, Centrifuge Parts, Pump Parts, Valves,
	Urea Production	-Decomposer Tubes, Pump Parts, Valves, Bolts

Stainless Steel - 2205 Duplex (UNS S31803/S32205)	- a Duplex Austenitic/ Ferritic stainless steel
ASME Boiler & Pressure Vessel Code Case	 Duplex UNS S31803/S32205 sheet, strip, plate, bar, pipe and tubing are covered in ASME Boiler and Pressure Vessel Code, Section VIII, Division I.
Specifications	 Duplex UNS S31803/S32205 is covered by the following ASTM, ASME specifications: ASTM A182/ASME SA-182: Forged or rolled alloy-steel pipe, flanges, forged fittings, and valves and parts for high temperature service ASTM A240/ASME SA-240: Heat resisting Cr and CrNi stainless steel, plate, sheet, strip for fusion-welded unfired pressure vessels ASTM A276: Stainless and heat resisting steel bars and shapes ASTM A789: Seamless and welded ferritic/austenitic stainless steel tubing for general service ASTM A790: Seamless and welded ferritic/austenitic stainless steel pipe

SECTION 2. TECHNICAL DATA & TERMS

Tolerances
Hot Rolled Carbon and Alloy Bars

Size Tolerances - Rounds and Squares						
Specified Sizes (Inches)	Size Toleran	Out of Round or				
opecined oizes (mones)	Over	Under	Square (Inches)			
To 5/16 incl.	0.005	0.005	0.008			
Over 5/16 to 7/16 incl.	0.006	0.006	0.009			
Over 7/16 to 5/8 incl.	0.007	0.007	0.010			
Over 5/8 to 7/8 incl.	0.008	0.008	0.012			
Over 7/8 to 1 incl.	0.009	0.009	0.013			
Over 1 to 1 1/8 incl.	0.010	0.010	0.015			
Over 1 1/8 to 1 1/4 incl.	0.011	0.011	0.016			
Over 1 1/4 to 1 3/8 incl.	0.012	0.012	0.018			
Over 1 3/8 to 1 1/2 incl.	0.014	0.014	0.021			
Over 1 1/2 to 2 incl.	1/64	1/64	0.023			
Over 2 to 2 1/2 incl.	1/32	0	0.023			
Over 2 1/2 to 3 1/2 incl.	3/64	0	0.035			
Over 3 1/2 to 4 1/2 incl.	1/16	0	0.046			
Over 4 1/2 to 5 1/2 incl.	5/64	0	0.058			
Over 5 1/2 to 6 1/2 incl.	1/8	0	0.070			
Over 6 1/2 to 8 1/4 incl.	5/32	0	0.085			
Over 8 1/4 to 9 1/2 incl.	3/16	0	0.100			
Over 9 1/2 to 10 incl.	1/4	0	0.120			

Out-of-round is the difference between the maximum diameters of the bar, measured at the same cross-section. Out-of-square is the difference in the two dimensions at the same cross-section of a square bar, each dimension being the distance between opposite sides.

Size Tolerances - Hexagons								
Specified Sizes (Inches)	Size Toleran	ces (Inches)	Out of Round or					
Specified Sizes (iliches)	Over	Under	Square (Inches)					
to 1/2 incl.	0.007	0.007	0.011					
Over 1/2 to 1 incl.	0.010	0.010	0.015					
Over 1 to 1 1/2 incl.	0.021	0.013	0.025					
Over 1 1/2 to incl.	1/32	1/64	1/32					
Over 2 to 2 1/2 incl.	3/64	1/64	3/64					
Over 21/2 to 31/2 incl.	1/16	1/64	1/16					

Out-of-hexagon section is the greatest difference between any two dimensions at the same cross-section between opposite faces.

Size Tolerances - Flats	Specified Widths (Inches)						
Thickness Tolerances, for Thickness Given Over and Under (Inches)	to 1 incl	Over 1 to 2 incl.	Over 2 to 4 incl.	Over 4 to 6 incl.	Over 6 to 8 incl.		
0.203 to 0.230 excl.	0.007	0.007	0.008	0.009	*		
0.203 to 1/4 excl.	0.007	0.007	0.008	0.009	0.015		
1/4 to 1/2 incl.	0.008	0.0129	0.015	0.015	0.016		
Over 1/2 to 1 incl.	0.010	0.015	0.020	0.020	0.25		
Over 1 to 2 incl.		1/32	1/32	1/32	1/32		
Over 2 to 3 incl.			3/64	1/16	1/16		
Over 3			3/64	3/64	1/16		
	Width Tolerance (Inches)						
Over	1/64	1/32	1/16	3/32	1/8		
Under	1/64	1/32	1/32	1/16	3/32		

Straightness Tolerances Rounds, Squares, Hexagons, Octagons, Flats, Spring Flats				
Standard	1/4 inch in any 5 feet, $1/4 \times (number of feet of length \div 5)$			
Special	$1/8$ inch in any 5 feet, $1/8 \times (number of feet of length \div 5)$			

Because of warpage, straightness tolerances do not apply to bars if any subsequent heating operation has been performed after straightening.

Data - Tolerances
Cold Finished Carbon Bars

Tolerances -Cold Finished Carbon Bars	Minus Tolerances in Inches (No Plus Tolerances Apply) (All tolerances are in inches ^B and are minus ^C)						
Specified Size	Maximum of Carbon Range 0.28% less	Maximum of Carbon Range Over 0.28% to 0.55% incl.	Maximum of Carbon Range to 0.55% include, Stress Relieved or Annealed after Cold Finishing	Maximum of Carbon Range Over 0.55% or All grades Quenched and Tempered or Normalized and Tempered before Cold Finishing			
Round -Cold Drawn (to 4in.)	or Turned and F	Polished					
To 1 1/2, incl.	0.002	0.003	0.004	0.005			
Over 1 1/2 to 2 1/2, incl.	0.003	0.004	0.005	0.006			
Over 2 1/2 to 4, incl.	0.004	0.005	0.006	0.007			
Over 4 to 6, incl.	0.005	0.006	0.007	0.008			
Over 6 to 8, incl.	0.006	0.007	0.008	0.009			
Over 8 to 9, incl.	0.007	0.008	0.009	0.010			
Hexagons							
To 3/4, incl.	0.002	0.003	0.004	0.006			
Over 3/4 to 1 1/2, incl.	0.003	0.004	0.005	0.007			
Over 1 1/2 to 1 1/2, incl.	0.004	0.005	0.006	0.008			
Over 2 1/2 to 3 1/8 incl.	0.005	0.006	0.007	0.009			
Over 3 1/8 to 4 incl.	0.005	0.006					
Squares							
To 3/4, incl.	0.002	0.004	0.005	0.007			
Over 3/4 to 1 1/2, incl.	0.003	0.005	0.006	0.008			
1/8 1 1/2 to 2 1/2, incl.	0.004	0.006	0.007	0.009			
Over 2 1/2 to 4, incl.	0.006	0.008	0.008	0.011			
Over 4 to 5 incl.	0.010						
Over 5 to 6 incl.	0.014						

Tolerances -Cold Finished Carbon Bars	Minus Tolerances in Inches (No Plus Tolerances Apply) (All tolerances are in inches ^B and are minus ^C)						
Specified Size	Maximum of Carbon Range 0.28% less	Maximum of Carbon Range Over 0.28% to 0.55% incl.	Maximum of Carbon Range to 0.55% include, Stress Relieved or Annealed after Cold Finishing	Maximum of Carbon Range Over 0.55% or All grades Quenched and Tempered or Normalized and Tempered before Cold Finishing			
Flats							
To 3/4, incl.	0.003	0.004	0.006	0.008			
Over 3/4 to 1 1/2, incl.	0.003	0.005	0.008	0.010			
Over 1 1/2 to 3, incl.	0.005	0.006	0.010	0.012			
Over 3 to 4 incl.	0.006	0.008	0.011	0.016			
Over 4 to 6 incl.	0.008	0.010	0.012	0.020			
Over 6	0.013	0.015					
Size (In.) Cold Drawn Ground and Polished		l, Ground Polished		from Specified us Only (In.)			
To 11/2, incl.	To 1 1	/2, incl.	0.001				
Over 11/2 to 2 1/2, excl.	Over 1 1/2	Over 1 1/2 to 2 1/2, excl.		0015			
2 1/2 to 3, incl.	2 1/2 to 3, incl.		0.002				
Over 3 to 4, incl.	Over 3 to 4, incl.		0.003				
	Over 4 to 6, incl.		0.004A				
	0,	ver 6	0.	005A			

A- For non-resulfurized steels (steels specified to maximum sulfur limits under 0.08%), or for steels thermally treated, the tolerance is increased by 0.001 in.

Data - Tolerances Cold Finished Alloy Bars

Tolerances -Cold Finished Alloy Bars	All tolerances are in inches and are minus ^B						
Specified Size (in. ^A)	Maximum of Carbon Range 0.28% less	Maximum of Carbon Range Over 0.28% to 0.55% incl.	Maximum of Carbon Range to 0.55% include, Stress Relieved or Annealed after Cold Finishing	Maximum of Carbon Range over 0.55% with or without stress relieving or annealing after cold finishing. Also, all carbons quenched and tempered (heat treated), or normalized and tempered before Cold Finishing.			
Round -Cold Drawn (to 4 in.) or Turned and Polished							
To 1, include, in coils	0.002	0.003	0.004	0.005			
Cut lengths: To 1 1/2, incl.	0.003	0.004	0.005	0.006			
Over 1 1/2 to 2 1/2, incl.	0.004	0.005	0.006	0.007			
Over 2 1/2 to 4, incl.	0.005	0.006	0.007	0.008			
Over 4 to 6, incl.	0.006	0.007	0.008	0.009			
Over 6 to 8, incl.	0.007	0.008	0.009	0.10			
Over 6 to 9, incl.	0.008	0.009	0.10	0.011			
Hexagons							
To 3/4, incl.	0.003	0.004	0.005	0.007			
Over 3/4 to 1 1/2, incl.	0.004	0.005	0.006	0.008			
Over 1 1/2 to 2 1/2, incl.	0.005	0.006	0.007	0.009			
Over 2 1/2 to 3 1/8 incl.	0.006	0.007	0.008	0.10			
Over 3 1/8 to 4 incl.	0.006						

Tolerances -Cold Finished Alloy Bars	All tolerances are in inches and are minus ^B			
Specified Size (in. ^A)	Maximum of Carbon Range 0.28% less	Maximum of Carbon Range Over 0.28% to 0.55% incl.	Maximum of Carbon Range to 0.55% include, Stress Relieved or Annealed after Cold Finishing	Maximum of Carbon Range over 0.55% with or without stress relieving or annealing after cold finishing. Also, all carbons quenched and tempered (heat treated), or normalized and tempered before Cold Finishing.
Squares				
To 3/4, incl.	0.003	0.005	0.006	0.006
Over 3/4 to 1 1/2, incl.	0.004	0.006	0.007	0.009
Over 1 1/2 to 2 1/2, incl.	0.005	0.007	0.008	0.010
Over 2 1/2 to 4, incl.	0.007	0.009	0.010	0.012
Over 4 to 5 incl.	0.011			
Flats				
To 3/4, incl.	0.004	0.005	0.007	0.009
Over 3/4 to 1 1/2, incl.	0.005	0.006	0.009	0.011
Over 1 1/2 to 3, incl.	0.006	0.007	0.011	0.013
Over 3 to 4 incl.	0.007	0.009	0.012	0.017
Over 4 to 6 incl.	0.009	0.011	0.013	0.021
Over 6	0.014			

Straightness Tolerances for Cold Finished Bars A, B

Tolerances -Cold Finished Alloy Bars

-All grades quenched and tempered or normalized and tempered to Brinell 302 max before cold finishing; and all grades stress relieved or annealed after cold finishing. Straightness tolerances are not applicable to bars having Brinell hardness exceeding 302.

-Straightness Tolerances, in. (Maximum Deviation) from Straightness in any 10-ft Portion of the Bar

			Carbon Range, or Less	Maximum of Carbon Range, 0.28% or Less and All Grades Thermally Treated	
Size, in.	Length, ft.	Rounds	Squares, Hexagons & Octagons	Rounds	Squares, Hexagons & Octagons
Less than 5⁄8	less than 15	1/8	3/16	3/16	1/4
Less than 5/8	15 and over	1/8	5/16	5/16	3/8
5⁄8 and over	less than 15	1⁄16	1/8	1/8	3/16
5/8 and over	15 and over	1/8	3/16	3/16	1/4

Machining Allowance

Round Bar Stock					
Hot Rolled Bars	 Alloy or spe diameter pe 		arbon stee	el bars, hot rolled 1.	6% of
Cold Drawn Bars	 - 0.001" per .062" (1.6%) of diameter per side, including leaded steels. - 0.0015" per .062" (2.4%) of diameter per side, for free machining grades, except leaded steels. 				
Cold Drawn, Ground and Polished Bars	 .0005" per .062" (0.8%) of diameter per side, including leaded steels. .00075" per .062" (1.2%) of diameter per side, for free machining grades, except leaded steels. 				
Turned Bars		t requires fin		ning to clean up the able:	turning
		Bar Size (Inches)		Minimum Removal Per Side (Inch)	Minimum Removal Per Diameter (Inch)
	5/8	to 2	Incl.	.010	.020
	Over 2	to 3	Incl.	.013	.026
	Over 3	to 31/2	Incl.	.015	.030
	Over 3 1/2	to 4	Incl.	.018	.036
	Over 4	to 41/2	Incl.	.021	.042
	Over 4 1/2	to 5	Incl.	.024	.048
	Over 5	to 6	Incl.	.027	.054
	Over 6	to 7	Incl.	.030	.060
	Over 7	to 8	Incl.	.033	.066
Turned and Polished Turned, Ground and Polished Bars	Bars ordered to these conditions are generally free of decarburization and surface imperfections. If total freedom from decarburization is required, it must be specified Turned, Ground and Polished Bars may be used in the as received condition.				

Recommended Stock Removal for Aircraft Quality Alloys Subject to Magnetic Particle Inspection

en-(•)(=metals

Theoretical Weights

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
1/8	.0035	042	.50	.84	
5/32	.0554	.065	.78	1.31	
3/16	.0078	.094	1.13	1.88	
7/32	.0107	.128	1.54	2.56	
1/4	.0139	.167	2.01	3.34	
9/32	.0176	.211	2.54	4.23	
5/16	.0218	.261	3.13	5.22	
11/32	.0263	.316	3.79	6.32	
3/8	.0313	.376	4.51	7.52	
13/32	.0368	.441	5.29	8.82	
7/16	.0426	.512	6.14	10.23	
15/32	.0489	.587	7.05	11.75	
31/64	.0523	.627	7.53	12.54	
1/2	.0557	.668	8.02	13.36	
17/32	.0629	.754	9.05	15.09	
9/16	.0705	.846	10.15	16.91	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
19/32	.0785	.942	11.31	18.85	
39/64	.0827	.993	11.91	19.85	
5/8	.0870	1.044	12.53	20.88	
41/64	.0914	1.097	13.16	21.94	
21/32	.0959	1.151	13.81	23.02	
11/16	.1053	1.263	15.16	25.27	
23/32	.1151	1.281	16.57	27.62	
47/64	.1201	1.442	17.30	28.83	
3/4	.1253	1.504	18.04	30.07	
49/64	.1306	1.567	18.80	31.34	
25/32	.1359	1.631	19.58	32.63	
13/16	.1470	1.765	21.17	35.29	
27/32	.1586	1.903	22.83	38.06	
55/64	.1645	1.974	23.69	39.48	
7/8	.1705	2.046	24.56	40.93	
29/32	.1829	2.195	26.34	43.90	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
15/16	.1958	2.349	28.19	46.98	
31/32	.2090	2.508	31.10	50.17	
63/64	.2158	2.590	31.08	51.80	
1	.2227	2.673	32.07	53.46	
1/64	.2294	2.752	33.03	55.05	
1/32	.2369	2.843	34.11	56.85	
1/16	.2515	3.017	36.21	60.35	
1/8	.2819	3.383	40.59	67.66	
3/16	.3141	3.769	45.23	75.38	
1/4	.3480	4.176	50.12	83.53	
5/16	.3837	4.604	55.25	92.09	
3/8	.4211	5.053	60.64	101.1	
7/16	.4603	5.523	66.28	110.5	
1/2	.5012	6.014	72.17	120.3	
9/16	.5438	6.526	78.31	130.5	
5/8	.5882	7.058	84.70	141.2	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
11/16	.6343	7.612	91.34	152.2	
3/4	.6821	8.186	98.23	163.7	
13/16	.7317	8.781	105.4	175.6	
7/8	.7831	9.397	112.8	187.9	
15/16	.8361	10.03	120.4	200.7	
2	.8910	10.69	128.3	213.8	
1/16	.9475	11.37	136.4	227.4	
1/8	1.006	12.07	114.8	241.4	
3/16	1.066	12.79	153.5	255.8	
1/4	1.128	13.53	162.4	270.6	
5/16	1.191	14.29	171.5	285.9	
3/8	1.256	15.08	180.9	301.5	
7/16	1.323	15.88	190.6	317.6	
1/2	1.392	16.71	200.5	334.1	
9/16	1.463	17.55	210.6	351.0	
5/8	1.535	18.42	221.0	368.4	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
11/16	1.609	19.31	231.7	386.1	
3/4	1.684	20.21	242.6	404.3	
13/16	1.762	21.14	253.7	422.9	
7/8	1.841	22.09	265.1	441.9	
15/16	1.922	23.06	276.8	461.3	
3	2.005	24.06	288.7	481.1	
1/16	2.089	25.07	300.8	501.4	
1/8	2.75	26.10	313.2	522.0	
3/16	2.263	27.16	325.9	543.1	
1/4	2.353	28.23	338.8	564.6	
5/16	2.444	29.33	351.9	586.6	
3/8	2.537	20.45	365.3	608.9	
7/16	2.632	31.58	379.0	631.7	
1/2	2.729	32.74	392.9	654.8	
9/16	2.827	33.92	407.1	678.4	
5/8	2.927	35.12	421.5	702/9	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
11/16	3.029	36.35	436.1	726.9	
3/4	3.132	37.59	451.0	751.7	
13/16	3.238	38.85	466.2	777.0	
7/8	3.345	40.14	481.6	802.7	
15/16	3.453	41.44	497.3	828.8	
4	3.564	42.77	513.2	855.3	
1/8	3.790	45.48	545.8	909.6	
3/16	3.906	46.87	562.4	937.4	
1/4	4.023	48.28	579.3	965.6	
5/16	4.142	49.71	596.5	994.2	
3/8	4.263	51.16	613.9	1023	
7/16	4.386	52.63	631.6	1053	
1/2	4.510	54.13	649.5	1083	
9/16	4.637	55.64	667.7	1113	
5/8	4.765	57.18	686.1	1143	
11/16	4.894	58.73	704.8	1175	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
3/4	5.026	60.31	723.7	1206	
7/8	5.294	63.52	762.3	1270	
15/16	5.430	65.15	781.9	1303	
5	5.569	66.82	801.9	1336	
1/8	5.850	70.21	842.4	1404	
1/4	6.139	73.67	884.0	1473	
7/16	6.345	77.22	926.6	1544	
1/2	6.586	79.03	948.3	1581	
1/4	6.738	80.86	970.2	1617	
5/8	7.048	84.57	1015	1691	
3/4	7.364	88.37	1060	1767	
15/16	7.852	94.23	1131	1885	
6	8.019	96.22	1155	1924	
1/4	8.701	104.4	1253	2088	
1/2	9.411	112.9	1355	2259	
3/4	10.15	121.8	1461	2436	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
7	10.91	131.0	1572	2619	
1/4	11.71	140.5	1686	2810	
1/2	12.53	150.4	1804	3007	
3/4	13.38	160.5	1926	3211	
8	14.26	171.1	2053	3421	
1/4	15.16	181.9	2183	3638	
1/2	16.09	193.1	2317	3862	
3/4	17.05	204.6	2456	4093	
9	18.04	216.5	2598	4330	
1/4	19.06	228.7	2744	4574	
1/2	20.10	241.2	2895	4824	
3/4	21.17	254.1	3049	5082	
10	22.27	267.3	3207	5346	
1/4	23.40	280.8	3370	5616	
1/2	24.56	294.7	3536	5894	
3/4	25.74	308.9	3707	6178	

Theoretical Weights (In Pounds): Steel - ROUNDS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
11	26.95	323.4	3881	6468	
1/2	29.46	353.5	4242	7070	
12	32.07	384.9	4619	7698	
1/2	34.80	417.6	5012	8353	
13	37.64	451.7	5421	9034	
1/2	40.59	487.1	5845	9743	
14	43.66	523.9	6287	10478	
15	50.12	601.4	7217	12028	
16	57.02	684.3	8211	13685	
1/2	60.64	727.7	8732	14554	
17	64.37	772.5	9269	15449	
1/2	68.21	818.6	9823	15371	
18	72.17	866.0	10392	17320	
19	80.41	964.9	11579	19298	
20	89.10	1069	12830	21383	
21	98.23	1179	14145	23575	

Theoretical Weights (In Pounds): Steel - ROUNDS							
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar			
22	107.8	1294	15524	25873			
23	117.8	1414	16967	28279			
24	128.3	1540	18475	30791			
26	150.6	1807	21682	36137			
28	174.6	2096	25148	41912			

Theoretical Weights (In Pounds): Steel - SQUARES							
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar			
1/8	.0044	.053	.64	1.06			
3/16	.0100	.120	1.44	2.40			
1/4	.0177	.213	2.55	4.25			
5/16	.0277	.332	3.98	6.64			
3/8	.0399	.479	5.74	9.57			
7/16	.0543	.651	7.82	13.03			
1/2	.0709	.851	10.21	17.02			
9/16	.0897	1.077	12.92	21.54			
5/8	.1108	1.329	15.95	26.59			
11/16	.1340	1.609	19.30	32.17			

Theoretical Weights (In Pounds): Steel - SQUARES						
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar		
3/4	.1595	1.914	22.97	38.29		
13/16	.1872	2.247	26.97	44.93		
7/8	.2171	2.606	31.27	52.11		
15/16	.2493	2.991	35.89	59.82		
1	.2836	3.403	40.84	68.06		
1/8	.3589	4.307	51.69	84.14		
3/16	.3999	4.799	57.59	95.98		
1/4	.4431	5.318	63.81	106.4		
3/8	.5362	6.434	77.21	128.7		
1/2	.6381	7.657	91.89	153.1		
5/8	.7489	8.987	107.8	179.7		
3/4	.8685	10.42	125.1	208.4		
7/8	.9970	11.96	143.6	239.3		
2	1.134	13.61	163.4	272.3		
1/8	1.281	15.37	184.4	307.4		
1/4	1.436	17.23	206.7	344.6		

Theoretical Weights (In Pounds): Steel - SQUARES					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
3/8	1.600	19.20	230.4	383.9	
1/2	1.773	21.27	255.2	425.4	
5/8	1.954	23.45	281.4	469.0	
3/4	2.145	25.74	308.0	514.7	
7/8	2.344	28.13	337.6	562.6	
3	2.552	30.63	367.5	612.6	
1/4	2.996	35.95	431.4	718.9	
1/2	3.474	41.69	500.3	833.8	
3/4	3.988	47.86	574.3	957.2	
4	4.538	54.45	653.4	1089	
1/4	5.123	61.47	737.6	1229	
1/2	5.743	68.91	827.0	1378	
3/4	6.999	76.78	921.4	1536	
5	7.090	85.08	1021	1702	
1/2	8.579	102.9	1235	2059	
6	10.21	122.5	1470	2450	

Theoretical Weights (In Pounds): Steel - SQUARES					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
7	13.90	166.8	2001	3335	
8	18.15	217.8	2614	4356	
9	22.97	275.6	3308	5512	
10	28.36	340.3	4084	6808	
12	40.84	490.0	5880	9800	
14	55.60	667.2	8804	13340	
16	72.60	871.2	10456	17424	
18	91.88	1102	13232	22048	

Theoretical Weights (In Pounds): Steel - HEXAGONS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
3/16	.0086	.104	1.24	2.07
1/4	.0154	.184	2.21	3.68
5/16	.0240	.288	3.45	5.76
3/8	.0345	.415	4.97	8.29
7/16	.0470	.564	6.77	11.28
1/2	.0614	.737	8.84	14.74
9/16	.0777	.933	11.19	18.65
5/8	.0959	1.151	13.82	23.03
11/16	.1161	1.393	16.72	27.86
3/4	.1382	1.658	19.89	33.16
13/16	.1621	1.946	23.35	38.91
7/8	.1880	2.257	27.08	45.13
15/16	.2159	2.590	31.08	51.81
1	.2456	2.947	35.37	56.95
1/16	.2773	3.327	39.93	66.54
1/8	.3108	3.730	44.76	74.60

Theoretical Weights (In Pounds): Steel - HEXAGONS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
3/16	.3463	4.156	49.87	83.12
1/4	.3838	4.605	55.26	92.10
5/16	.4231	5.077	60.93	101.5
3/8	.4643	5.572	66.87	111.4
7/16	.5075	6.090	73.08	121.8
1/2	.5526	6.631	79.56	132.6
9/16	.5996	7.196	86.35	143.9
5/8	.6485	7.783	93.39	155.7
11/16	.6994	8.393	100.7	167.9
3/4	.7522	9.026	108.3	180.5
13/16	.8068	9.682	116.2	193.6
7/8	.8634	10.36	124.3	207.2
15/16	.9220	11.06	132.8	221.3
2	.9824	11.79	141.5	235.8
1/8	1.109	13.31	159.7	266.2
3/16	1.175	14.10	169.2	282.1

Theoretical Weig	Theoretical Weights (In Pounds): Steel - HEXAGONS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar		
1/4	1.243	14.92	179.0	298.4		
3/8	1.385	16.62	199.5	332.5		
7/16	1.459	17.51	210.1	350.2		
1/2	1.535	18.42	221.0	368.4		
5/8	1.692	20.31	243.7	406.2		
3/4	1.857	22.29	267.5	445.8		
7/8	2.030	24.36	292.3	487.2		
3	2.210	26.53	318.3	530.5		
1/8	2.398	28.78	345.4	575.6		
1/2	3.009	36.10	433.2	722.1		
3/4	3.454	41.45	497.3	828.9		
4	3.930	47.16	565.9	943.1		

Theoretical Weights (In Pounds): Steel - OCTAGONS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
3/16	.0083	.099	1.19	1.98
1/4	.0147	.176	2.11	3.52
5/16	.0229	.275	3.30	5.51
3/8	.0330	.397	4.76	7.93
7/16	.0450	.540	6.48	10.79
1/2	.0587	.705	8.46	14.10
9/16	.0743	.892	10.70	17.84
5/8	.0918	1.101	13.21	22.02
11/16	.1110	1.333	16.00	26.66
3/4	.1322	1.586	19.03	31.72
13/16	.1551	1.861	22.33	37.22
7/8	.1799	2.159	25.91	43.18
15/16	.2065	2.478	29.74	49.56
1	.2349	2.819	33.83	56.38
1/16	.2652	2.183	38.20	63.66
1/8	.2974	3.568	42.82	71.36

Theoretical Weig	Theoretical Weights (In Pounds): Steel - OCTAGONS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar		
3/16	.3313	3.976	47.71	79.52		
1/4	.3671	4.405	52.86	88.10		
5/16	.4047	4.857	58.28	97.14		
3/8	.4442	5.330	63.96	106.6		
7/16	.4855	5.826	69.91	116.5		
1/2	.5286	6.343	76.12	126.9		
9/16	.5736	6.883	82.60	137.7		
5/8	.6204	7.445	89.34	148.9		
11/16	.6690	8.028	96.34	160.6		
3/4	.7195	8.634	103.6	172.7		
13/16	.7718	9.262	111.1	185.4		
7/8	.8260	9.912	118.9	198.2		
15/16	.8819	10.58	127.0	211.6		
2	.9298	11.28	135.4	225.6		
1/8	1.061	12.73	152.8	254.6		
3/16	1.124	13.49	161.9	269.8		

Theoretical Weig	Theoretical Weights (In Pounds): Steel - OCTAGONS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar		
1/4	1.189	14.27	171.2	285.4		
3/8	1.325	15.90	190.8	318.0		
7/16	1.396	16.75	201.0	335.0		
1/2	1.468	17.62	211.4	352.4		
5/8	1.619	19.43	233.2	388.6		
3/4	1.777	21.32	255.8	426.4		
7/8	1.942	23.30	279.6	466.0		
3	2.114	25.37	304.4	507.4		
1/8	2.294	27.53	330.4	550.6		
1/2	2.878	34.54	414.5	690.8		

heoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
1/16				
x 1/4	.0044	.053	.641	.06
3/8	.0066	.080	.961	.60
1/2	.0089	1.06	1.28	2.13
5/8	.0111	.133	1.60	2.66
3/4	.0133	.160	1.91	3.19
7/8	.0155	.186	2.23	3.72
1	.0177	.213	2.55	4.25
1 1/8	.0199	.239	2.87	4.79
1 1/4	.0222	.266	3.19	5.32
1 1/2	.0266	.319	3.83	6.38
1 3/4	.0310	.372	4.47	7.45
2	.0355	.425	5.11	8.41
2 1/2	.0443	.532	6.38	10.64
3	.0532	.638	7.66	12.76
3/32				

heoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
x 3/8				
1/2	.0100	.120	1.44	2.39
5/8	.0133	.160	1.91	3.19
3/4	.0166	.199	2.39	3.99
7/8	.0199	.239	2.87	4.79
1	.0233	.279	3.35	5.58
1 1/8	.0266	.319	3.83	6.38
1 1/4	.0299	.359	4.31	7.18
1 1/2	.0332	.399	4.79	7.98
1 3/4	.0399	.479	5.74	9.57
2	.0465	.558	6.70	11.17
2 1/2	.0532	.638	7.66	12.76
3	.0665	.798	9.57	15.95
1/8	.0798	.957	11.49	19.14
x 3/16				
1/4				

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
5/16	.0066	.080	.96	1.60
3/8	.0089	.106	1.28	2.13
1/2	.0111	.133	1.60	2.66
5/8	.0133	.160	1.91	3.19
3/4	.0177	.213	2.55	4.25
7/8	.0222	.266	3.19	5.32
1	.0266	.319	3.83	6.38
1 1/8	.0310	.372	4.47	7.45
1 1/4	.0355	.425	5.11	8.51
1 1/2	.0399	.479	5.74	8.57
1 3/4	.0443	0532	6.38	10.64
2	.0532	.638	7.66	12.76
2 1/4	.0620	.745	8.93	14.89
2 1/2	.0709	8.51	10.21	17.02
2 3/4	.0798	.957	11.49	19.14
3	.0886	1.064	12.76	21.27

Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
3 1/2	.0975	1.170	14.04	23.40	
4	.1064	1.276	15.31	25.52	
4 1/2	.1241	1.489	17.87	29.78	
5	.1418	1.702	20.42	34.03	
6	.1595	1.914	22.97	38.29	
12	.1773	2.127	25.52	42.74	
	.2127	2.552	30.63	51.05	
	.4254	5.105	61.26	102.1	
1/4 x 5/16	.0222	.266	3.19	5.32	
3/8	.0266	.319	3.83	6.38	
1/2	.0355	.425	5.11	8.51	
9/16	.0399	.479	5.74	9.57	
5/8	.0443	.532	6.38	10.64	
3/4	.0532	.638	7.66	12/76	
7/8	.0620	.745	8.93	14.89	
1	.0709	.851	10.21	17.02	

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
1 1/8	.0798	.957	11.49	19.14
1 1/4	.0886	1.064	12.76	21.27
1 3/8	.0975	1.170	14.04	23.40
1 1/2	.1064	1.276	15.31	25.52
1 5/8	.1152	1.383	1.659	27.65
1 3/4	.1241	1.489	17.87	29.78
2	.1428	1.702	20.42	34.03
2 1/4	.1595	1914	22.97	38.29
2 1/2	.1773	2.127	25.52	42.54
2 3/4	.1950	2.340	28.08	46.79
3	.2127	2.552	30.63	51.05
3 1/4	.2304	2.765	33.18	55.30
3 1/2	.2482	2.978	35.73	59.76
3 3/4	.2659	3.191	38.29	63.81
4	.2836	3.403	40.84	68.86
4 1/2	.3191	3.829	45.94	76.56

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
5	.3545	4.254	51.05	85.08
5 1/2	.3900	4.679	56.15	93.59
6	.4254	5.105	61.26	102.1
7	.4963	5.956	71.47	119.1
8	.5672	6.806	81.68	136.1
10	.7090	8.508	102.1	170.2
12	.8508	10.21	122.5	204.2
5/16				
x 3/8				
1/2	.0332	.399	4.79	7.98
5/8	.0443	.532	6.38	10.64
3/4	.0554	.665	7.98	13.29
7/8	.0665	.798	9.57	15.95
1	.0775	.931	11.17	18.61
1 1/8	.0886	1.064	12.76	21.27
1 1/4	.0997	1.196	14.36	23.93

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
1 3/8	.1108	1.329	15.95	26.59
1 1/2	.1219	1.462	17.55	29.25
1 5/8	.1329	1.595	19.14	31.91
1 3/4	.1440	1.729	20.74	34.56
2	.1551	1.861	22.33	37.22
2 1/4	.1773	2.127	25.52	42.54
2 1/2	.1994	2.393	28.71	47.86
3	.2216	2.659	31.91	53.18
3 1/2	.2659	3.191	38.29	63.81
4	.3102	3.722	44.68	74.75
4 1/2	.3545	4.254	51.05	85.08
5	.3988	4.786	57.43	95.72
5 1/2	.4431	5.318	63.81	106.4
6	.4874	5.849	70.19	117.0
7	.5318	6.381	76.57	127.6
8	.6204	7.445	89.33	148.9

Theoretical Weig	Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar		
10	7090	8.508	102.1	170.2		
12	.8863	10.64	127.6	212.7		
3/8	1.064	12.76	153.1	255.2		
x 7/16						
1/2						
5/8						
3/4	.0465	.558	6.70	11.17		
7/8	.0532	.638	7.66	12.76		
1	.0665	.798	9.57	15.95		
1 1/8	.0798	.957	11.49	19.14		
1 1/4	.0931	1.117	13.40	22.33		
1 3/8	.1064	1.276	15.31	25.52		
1 1/2	.1196	1.436	17.23	28.71		
1 5/8	.1329	1.595	19.14	31.91		
1 3/4	.1462	1.755	21.06	35.10		
2	.1595	1.914	22.97	38.29		

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
2 1/4	.1728	2.074	24.89	41.48
2 1/2	.1861	2.233	26.80	44.67
2 3/4	.2127	2.552	30.63	51.05
3	.2393	2.871	34.46	57.43
3 1/4	.2659	3.191	38.29	63.81
3 3/8	.2925	3.510	42.11	70.19
3 ½	.3191	3.829	45.94	76.57
	.3436	4.148	49.77	82.95
	.3589	4.307	51.69	86.14
	.3722	4.467	53.60	89.33
4	.4254	5.105	61.26	102.1
4 1/4	.4520	5.424	65.09	108.5
4 1/2	.4786	5.743	68.91	114.9
5	.5318	6.381	76.57	127.6
5 1/2	.5849	7.019	84.23	140.4
6	.6381	7.657	91.89	153.1

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
8	.8505	102.1	122.5	204.2
10	1.064	12.76	153.1	255.2
12	1.276	15.31	183.8	306.3
7/16				
x 1/2				
5/8	.0620	.745	8.93	14.89
3/4	.0775	.931	11.17	18.61
7/8	.0931	1.117	13.40	22.33
1	.1086	1.303	15.63	26.06
1 1/4	.1241	1.489	17.87	29.78
1 1/2	.1551	1.862	22.33	37.22
1 3/4	.1861	2.333	26.80	44.67
2	.2171	2.606	31.27	52.11
2 1/4	.2482	2.978	35.73	59.56
2 1/2	.2792	3.350	40.20	67.00
3	.3102	3.722	44.67	74.45

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
3 1/2	.3722	4.467	53.60	89.33
4	.4343	5.211	62.53	104.2
5	.4963	5.956	71.47	119.1
1/2	.6204	7.445	89.33	148.9
x 5/8				
3/4				
7/8	0886	1.064	12.76	21.27
1	.1064	1.276	15.31	25.52
1 1/8	.1241	1.489	17.81	29.78
1 1/4	.1418	1.702	20.42	34.03
1 3/8	.1595	1.914	22.97	38.29
1 1/2	.1773	2.127	25.52	42.54
1 5/8	.1950	2.340	28.08	46.79
1 3/4	.2127	2.552	30.63	51.05
2	.2304	2.765	33.18	55.30
2 1/4	.2482	2.978	25.73	59.56

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
2 1/2	2836	3.403	40.84	68.06
2 3/4	.3191	3.829	45.94	76.57
3	.3545	4.254	51.15	85.08
3 1/4	.3900	4.679	56.15	93.59
3 1/2	.4254	5.105	61.26	102.1
4	.4609	5.530	66.36	110.6
4 1/4	.4963	5.956	71.47	119.1
4 1/2	.5672	6.806	81.68	136.1
5	.6027	7.232	86.78	144.6
5 1/2	.6381	7.657	91.89	153.1
6	.7090	8.508	102.1	170.2
7	.7799	9.359	112.3	187.2
8	.8508	10.21	122.5	204.2
9	.9926	11.91	142.9	238.2
10	1.134	13.61	163.4	272.3
12	1.276	15.31	183.8	306.3

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
	1.418	17.02	204.2	340.3
	1.702	20.42	245.0	408.4
5/8				
x 3/4	.13291	.595	19.14	31.91
7/8	.1551	.1861	22.33	37.22
1	.1773	2.127	25.52	42.54
1 1/8	.1994	2.393	28.71	47.86
1 1/4	.2216	2.659	31.91	53.18
1 3/8	.2437	2.925	35.10	58.49
1 1/2	.2659	3.191	38.29	63.81
1 3/4	.3102	3.722	44.67	74.57
2	.3545	4.254	51.05	85.08
2 1/4	.3988	4.786	57.43	95.72
2 1/2	.4431	5.318	63.81	106.4
2 3/4	.4874	5.849	70.19	117.0
3	.5318	6.381	76.57	127.6

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
3 1/4	.5761	6.913	82.95	138.3
3 1/2	.6204	7.445	89.33	148.9
4	.7090	8.508	102.1	170.2
4 1/2	.7976	9.572	114.9	191.4
5	.8863	10.64	127.6	212.7
5 1/2	.9749	11.70	140.4	234.0
6	1.064	12.76	153.1	255.2
7	1.241	14.89	178.7	297.8
8	1.418	17.02	204.2	340.3
10	1.773	21.27	255.2	425.5
12	2.127	25.52	306.3	510.5
3/4				
x 7/8	.1861	2.233	26.80	44.67
1	.2127	2.552	30.63	51.05
1 1/8	.2393	2.871	34.46	57.43
1 1/4	.2659	3.191	38.29	63.81

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
1 3/8	.2925	3.510	42.11	70.19
1 1/2	.3191	3.829	45.94	76.57
1 5/8	.3456	4.148	49.77	82.95
1 3/4	.3722	4.467	53.60	89.33
2	.4254	5.105	61.26	102.1
2 1/4	.4786	5.743	68.91	114.9
2 1/2	.5318	6.381	76.57	127.6
2 3/4	.5849	7.019	84.23	140.4
3	.6381	7.657	91.89	153.1
3 1/4	.6913	8.295	99.54	165.9
3 1/2	.7445	8.993	107.2	178.7
4	.8508	10.21	122.5	204.2
4 1/2	.9572	11.49	137.8	229.7
5	1.064	12.76	153.1	255.2
5 1/2	1.170	14.04	168.5	280.8
6	1.276	15.31	183.8	306.3

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
7	1.489	17.87	214.4	357.3
8	1.702	20.42	245.0	408.4
9	1.914	22.97	275.7	459.4
10	2.127	25.52	306.3	510.5
12	2.552	30.63	367.5	612.6
7/8				
1	2482	2.978	35.73	59.56
1 1/8	.2792	3.350	40.20	67.00
1 1/4	.3102	3.722	44.67	74.45
1 3/8	.3412	4.094	49.13	81.89
1 1/2	.3722	4.467	53.60	89.33
1 3/4	.4343	5.211	62.53	104.2
2	.4963	5.956	71.47	119.1
2 1/4	.5583	6.700	80.40	134.0
2 1/2	.6204	7.445	89.33	148.9
2 5/8	.6514	7.817	93.80	156.3

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
2 3/4	.6824	8.189	98.27	163.8
3	.7445	8.933	107.2	178.1
3 1/2	.8685	10.42	125.1	208.4
4	.9926	11.91	142.9	238.2
4 1/2	1.117	13.40	160.8	268.0
4 3/4	1.179	14.14	169.7	282.9
5	1.241	14.89	178.7	297.8
6	1.489	17.87	214.4	357.3
7	1.737	20.84	250.1	416.9
8	1.985	23.82	285.9	476.4
12	2.975	35.73	428.4	714.7
1				
x11/8				
1 1/4				
1 3/8	.3191	3.829	45.94	76.57
1 1/2	.3545	4.254	51.15	85.08

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
1 3/4	.3900	4.679	56.15	93.59
2	.4254	5.105	61.26	102.1
2 1/4	.4963	5.956	71.47	119.1
2 1/2	.5672	6.806	81.68	136.1
2 3/4	.6381	7.657	91.89	153.1
3	.7090	8.508	102.1	170.2
3 1/4	.7799	9.459	112.3	187.2
3 1/2	.8508	10.21	122.5	204.2
4	.9217	11.06	132.7	221.2
4 1/2	.9926	11.91	142.9	238.2
5	1.134	13.61	163.4	272.3
5 1/2	1.276	15.31	183.8	306.2
6	1.418	17.02	204.2	340.3
7	1.560	18.72	224.6	374.4
8	1.702	20.42	245.0	408.4
9	1.985	23.82	285.9	476.4

Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
10	2.269	27.23	326.7	544.5	
12	2.552	30.63	367.6	612.6	
1-1/8	2.836	34.03	408.4	680.6	
x2	3.403	40.84	490.1	816.8	
3					
4					
4 1/2					
5	.6381	7.657	91.89	153.1	
6	.9572	11.49	137.8	229.7	
8	1.276	15.31	306.3		
	1.436	17.23	206.7	344.6	
	1.595	19.14	229.7	382.9	
	1.914	22.97	275.7	459.4	
	2.552	30.63	367.5	612.6	
1-1/4					
x11/2	.5318	6.381	76.57	127.6	

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
1 3/4	.6204	7.445	89.33	148.9
2	.7090	8.508	102.1	170.2
2 1/4	.7976	9.572	114.9	191.4
2 1/2	.8863	10.64	127.6	212.7
2 3/4	.9749	11.70	140.4	234.0
3	1.064	12.76	153.1	255.2
3 1/4	1.152	13.82	165.8	276.4
3 1/2	1.241	14.89	178.7	297.8
4	1.418	17.02	204.2	340.3
4 1/2	1.595	19.14	229.7	382.9
5	1.773	21.27	255.2	425.4
5 1/2	1.950	23.40	280.8	467.9
6	1.217	25.52	306.3	510.5
7	2.482	29.78	357.3	595.6
8	2.836	34.03	408.4	680.6
10	3.545	42.54	510.5	850.8

Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
12	4.254	51.05	612.6	1021	
1-1/2					
x13/4					
2					
2 1/4	.7445	8.933	107.2	178.7	
2 1/2	.8508	10.21	122.5	204.2	
2 3/4	.9572	11.49	137.8	229.7	
3	1.064	12.76	153.1	255.2	
3 1/2	1.170	14.04	168.5	280.8	
4	1.276	15.31	183.8	306.3	
4 1/2	1.489	17.87	214.4	357.3	
5	1.702	20.42	245.0	408.4	
5 1/2	1.914	22.97	275.7	459.4	
6	2.127	25.52	306.3	510.5	
7	2.340	28.08	336.9	561.5	
8	2.552	30.63	367.5	612.6	

Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
10	2.978	35.73	428.8	714.7	
12	3.403	40.84	490.1	816.8	
	4.254	51.05	612.6	1021	
	5.105	61.26	735.1	1225	
1-3/4					
x2	.9926	11.91	142.9	238.2	
2 1/4	1.117	13.40	160.8	268.0	
2 1/2	1.241	14.89	178.7	297.8	
2 3/4	1.365	16.38	196.5	327.6	
3	1.489	17.87	214.4	357.3	
3 1/2	1.737	20.84	250.1	416.9	
4	1.985	23.82	285.9	476.4	
4 1/2	2.233	26.80	321.6	536.0	
5	2.482	29.78	357.3	595.6	
6	2.978	35.73	428.8	714.7	
2					

Theoretical Weights (In Pounds): Steel - FLATS				
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar
x11/4				
2 1/2	1.276	15.31	183.8	306.3
2 3/4	1.418	17.02	204.2	340.3
3	1.560	18.72	224.6	374.4
3 1/2	1.702	20.42	245.0	408.4
4	1.985	23.82	285.9	476.4
4 1/2	2.269	27.23	326.7	544.5
5	2.552	30.63	367.5	612.6
6	2.836	34.03	408.4	680.6
7	3.403	40.84	490.1	816.8
8	3.970	47.64	571.7	952.9
10	4.538	54.45	653.4	1089
12	5.672	68.06	816.8	1361
2-1/2	6.806	81.68	980.1	1634
x23/4				
3				

Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
3 1/2	1.914	23.40	80.8	468.0	
4	2.127	25.52	306.3	510.5	
4 1/2	2.482	29.78	357.3	595.6	
5	2.836	34.03	408.4	680.6	
6	3.191	38.29	459.4	765.7	
8	3.545	42.54	510.5	850.8	
9	4.254	51.05	612.6	1021	
10	5.672	68.06	816.8	1361	
12	6.381	76.57	918.9	1531	
3	7.090	85.08	1021	1702	
x31/2	8.508	102.1	1225	2042	
4	1.914	23.40	80.8	468.0	
4 1/2					
5					
6	2.978	35.73	428.8	714.7	
7	3.403	40.83	490.1	816.8	

Theoretical Weights (In Pounds): Steel - FLATS					
Size in Inches.	Per Inch	Per Foot	12-Ft Bar	20-Ft Bar	
8	4.254	35.73	428.8	714.7	
10	5.105	40.83	490.1	816.8	
	5.957	45.95	551.3	918.9	
	6.806	51.05	612.6	1021	
	8.508	61.26	735.1	1225	

Chemical Composition

Chemical Compo	osition - Carbon Ste	els (Heat Chemica	l Ranges and Limits,	, percent)
AISI/SAE	Carbon	Manganese	Phosphorus, max	Sulfur, max
1005	0.06	0.35 max	0.040	0.050
1006	0.08 max	0.25-0.40	0.040	0.050
1008	0.10 max	0.30-0.50	0.040	0.050
1010	0.08-0.13	0.30-0.60	0.040	0.050
1011	0.08-0.13	0.60-0.90	0.040	0.050
1012	0.10-0.15	0.30-0.60	0.040	0.050
1013	0.11-0.16	0.50-0.80	0.040	0.050
1015	0.13-0.18	0.30-0.60	0.040	0.050
1016	0.13-0.18	0.60-0.90	0.040	0.050
1017	0.15-0.20	0.30-0.60	0.040	0.050
1018	0.15-0.20	0.60-0.90	0.040	0.050
1019	0.15-0.20	0.70-1.00	0.040	0.050
1020	0.18-0.23	0.30-0.60	0.040	0.050
1021	0.18-0.23	0.60-0.90	0.040	0.050
1022	0.18-0.23	0.70-1.00	0.040	0.050
1023	0.20-0.25	0.30-0.60	0.040	0.050

Chemical Compos	sition - Carbon Ste	els (Heat Chemical	Ranges and Limits,	percent)
AISI/SAE	Carbon	Manganese	Phosphorus, max	Sulfur, max
1025	0.22-0.28	0.30-0.60	0.040	0.050
1029	0.25-0.31	0.60-0.90	0.040	0.050
1030	0.28-0.34	0.60-0.90	0.040	0.050
1034	0.32-0.38	0.50-0.80	0.040	0.050
1035	0.32-0.38	0.60-0.90	0.040	0.050
1037	0.32-0.38	0.70-1.00	0.040	0.050
1038	0.35-0.42	0.60-0.90	0.040	0.050
1039	0.37-0.44	0.70-1.00	0.040	0.050
1040	0.37-0.44	0.60-0.90	0.040	0.050
1042	0.40-0.47	0.60-0.90	0.040	0.050
1043	0.40-0.47	0.70-1.00	0.040	0.050
1044	0.43-0.50	0.30-0.60	0.040	0.050
1045	0.43-0.50	0.60-0.90	0.040	0.050
1046	0.43-0.50	0.70-1.00	0.040	0.050
1049	0.46-0.53	0.60-0.90	0.040	0.050
1050	0.48-0.55	0.60-0.90	0.040	0.050

Chemical Composition - Carbon Steels (Heat Chemical Ranges and Limits, percent)				
AISI/SAE	Carbon	Manganese	Phosphorus, max	Sulfur, max
1053	0.48-0.55	0.70-1.00	0.040	0.050
1055	0.50-0.60	0.60-0.90	0.040	0.050
1059	0.55-0.65	0.50-0.80	0.040	0.050
1060	0.55-0.65	0.60-0.90	0.040	0.050
1064	0.60-0.70	0.50-0.80	0.040	0.050
1065	0.60-0.70	0.60-0.90	0.040	0.050
1069	0.65-0.75	0.40-0.70	0.040	0.050
1070	0.65-0.75	0.60-0.90	0.040	0.050
1071	0.65-0.70	0.75-1.05	0.040	0.050
1074	0.70-0.80	0.50-0.80	0.040	0.050
1075	0.70-0.80	0.40-0.70	0.040	0.050
1078	0.72-0.85	0.30-0.60	0.040	0.050
1080	0.75-0.88	0.60-0.90	0.040	0.050
1084	0.80-0.93	0.60-0.90	0.040	0.050
1086	0.80-0.93	0.30-0.50	0.040	0.050
1090	0.85-0.98	0.60-0.90	0.040	0.050
1095	0.90-1.03	0.30-0.50	0.040	0.050

Chemical Composition - Carbon Steels (Heat Chemical Ranges and Limits, percent) - Resulfurized Carbon Steels

AISI/SAE	Carbon	Manganese	Phosphorus, max	Sulfur, max
1108	0.08-0.13	0.60-0.80	0.040	0.08-0.13
1109	0.08-0.13	0.60-0.90	0.040	0.08-0.13
1110	0.08-0.13	0.30-0.60	0.040	0.08-0.13
1116	0.14-0.13	1.10-1.40	0.040	0.16-0.23
1117	0.14-0.20	1.00-1.30	0.040	0.08-0.13
1118	0.14-0.20	1.30-1.60	0.040	0.08-0.13
1119	0.14-0.20	1.00-1.30	0.040	0.24-0.33
1132	0.27-0.34	1.35-1.65	0.040	0.08-0.13
1137	0.32-0.39	1.35-1.65	0.040	0.08-0.13
1139	0.35-0.43	1.35-1.65	0.040	0.13-0.20
1140	0.37-0.44	0.70-1.00	0.040	0.08-0.13
1141	0.37-0.45	1.35-1.65	0.040	0.08-0.13
1144	0.40-0.48	1.35-1.65	0.040	0.24-0.33
1145	0.42-0.49	0.70-1.00	0.040	0.04-0.07
1146	0.42-0.49	0.70-1.00	0.040	0.08-0.13
1151	0.48-0.55	0.70-1.00	0.040	0.08-0.13

Chemical Composition - Carbon Steels (Heat Chemical Ranges and Limits, percent) - Rephosphorized and Resulfurized Carbon Steels

AISI/SAE	Carbon	Manganese	Phosphorus, max	Sulfur, max	Lead
1211	0.13 max	0.60-0.90	0.07-0.12	0.10-0.15	
1212	0.13 max	0.70-1.00	0.07-0.12	0.16-0.23	
1213	0.13 max	0.70-1.00	0.07-0.12	0.24-0.33	
1215	0.09 max	0.75-1.05	0.04-0.09	0.26-0.35	
12L13	0.13 max	0.70-1.00	0.07-0.12	0.24-0.33	0.15-0.35
12L14	0.15 max	0.85-1.15	0.04-0.09	0.26-0.35	0.15-0.35
12L15	0.09 max	0.75-1.05	0.04-0.09	0.26-0.35	0.15-0.35

Chemical Composition - Carbon Steels (Heat Chemical Ranges and Limits, percent) - High-Manganese Carbon Steels

AISI/SAE	Former Designation	Carbon	Manganese	Phosphorus, max	Sulfur, max
1513		0.10-0.16	1.10-1.40	0.040	0.050
1518		0.15-0.21	1.10-1.40	0.040	0.050
1522		0.18-0.24	1.10-1.40	0.040	0.050
1524	1024	0.19-0.25	1.35-1.65	0.040	0.050
1525		0.23-0.29	0.80-1.10	0.040	0.050
1526		0.22-0.29	1.10-1.40	0.040	0.050
1527	1027	0.22-0.29	1.20-1.50	0.040	0.050
1536	1036	0.30-0.37	1.20-1.50	0.040	0.050
1541	1041	0.36-0.44	1.35-1.65	0.040	0.050
1547		0.43-0.51	1.35-1.65	0.040	0.050
1548	1048	0.44-0.52	1.10-1.40	0.040	0.050
1551	1051	0.45-0.56	0.85-1.15	0.040	0.050
1552	1052	0.47-0.55	1.20-1.50	0.040	0.050
1561	1061	0.55-0.65	0.75-1.05	0.040	0.050
1566	1066	0.60-0.71	0.85-1.15	0.040	0.050
1572	1072	0.65-0.76	1.00-1.30	0.040	0.050

Chemical	Compositio	n - Alloy Ste	eels (Heat (Chemical Ra	nges and Li	mits, perce	nt)	
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
1330	0.28-0.33	1.60-1.90	0.035	0.040	0.15 to 0.35			
1335	0.33-0.38	1.60-1.90	0.035	0.040	0.15 to 0.35			
1340	0.38-0.43	1.60-1.90	0.035	0.040	0.15 to 0.35			
1345	0.43-0.48	1.60-1.90	0.035	0.040	0.15 to 0.35			
3312	0.08-0.13	0.45060	0.025	0.025	0.20 to 0.35	3.25-3.75	1.40-1.75	
4012	0.09-0.14	0.75-1.00	0.035	0.040	0.15 to 0.35			0.15-0.25
4023	0.09-0.25	0.70-0.90	0.035	0.040	0.15 to 0.35			0.15-0.25
4024	0.20-0.25	0.70-0.90	0.035	0.035- 0.050	0.15 to 0.35			0.20-0.30
4027	0.25-0.30	0.70-0.90	0.035	0.040	0.15 to 0.35			0.20-0.30
4028	0.25-0.30	0.70-0.90	0.035	0.035- 0.050	0.15 to 0.35			0.20-0.30
4032	0.30-0.35	0.70-0.90	0.035	0.040	0.15 to 0.35			0.20-0.30
4037	0.35-0.40	0.70-0.90	0.035	0.040	0.15 to 0.35			0.20-0.30
4042	0.40-0.45	0.70-0.90	0.035	0.040	0.15 to 0.35			0.20-0.30
4047	0.45-0.50	0.70-0.90	0.035	0.040	0.15 to 0.35			0.20-0.30
4118	0.18-0.23	0.70-0.90	0.035	0.040	0.15 to 0.35		0.40-0.60	0.08-0.15
4130	0.28-0.33	0.40-0.60	0.035	0.040	0.15 to 0.35		0.70-1.10	0.15-0.25

Chemical	Compositio	n - Alloy Ste	eels (Heat (Chemical Ra	nges and Li	mits, percei	nt)	
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
4135	0.33-0.38	0.70-0.90	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4137	0.35-0.40	0.70-0.90	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4140	0.38-0.43	0.75-1.00	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4142	0.40-0.45	0.75-1.00	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4145	0.43-0.48	0.75-1.00	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4147	0.45-0.50	0.75-1.00	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4150	0.48-0.53	0.75-1.00	0.035	0.040	0.15 to 0.35		0.80-1.10	0.15-0.25
4161	0.56-0.64	0.75-1.00	0.035	0.040	0.15 to 0.35		0.70-0.90	0.15-0.25
4320	0.17-0.22	0.45-0.65	0.035	0.040	0.15 to 0.35	1.65-2.00	0.40-0.60	0.20-0.30
4340	0.38-0.43	0.60-0.80	0.035	0.040	0.15 to 0.35	1.65-2.00	0.70-0.90	0.20-0.30
4419	0.18-0.23	0.45-0.65	0.035	0.040	0.15to 0.35			0.45-0.60
4422	0.20-0.25	0.70-0.90	0.035	0.040	0.15 to 0.35			0.35-0.45
4427	0.24-0.29	0.70-0.90	0.035	0.040	0.15 to 0.35			0.35-0.45
4615	0.13-0.18	0.45-0.65	0.035	0.040	0.15 to 0.35	1.65-2.00		0.20-0.30
4620	0.17-0.22	0.45-0.65	0.035	0.040	0.15 to 0.35	1.65-2.00		0.20-0.30
4621	0.18-0.23	0.70-0.90	0.035	0.040	0.15 to 0.35	1.65-2.00		0.20-0.30

Chemical	Compositio	n - Alloy Ste	eels (Heat (Chemical Ro	anges and Li	mits, percei	nt)	
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
4626	0.24-0.29	0.45-0.65	0.035	0.040	0.15 to 0.35	0.15 to 0.35		0.15-0.25
4718	0.16-0.21	0.70-0.90	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.35-0.55	0.30-0.40
4720	0.17-0.22	0.50-0.70	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.35-0.55	0.15-0.25
4815	0.13-0.18	0.40-0.60	0.035	0.040	0.15 to 0.35	0.15 to 0.35		0.20-0.30
4817	0.15-0.20	0.40-0.60	0.035	0.040	0.15 to 0.35	0.15 to 0.35		0.20-0.30
4820	0.18-0.23	0.50-0.70	0.035	0.040	0.15 to 0.35	0.15 to 0.35		0.20-0.30
5015	0.12-0.17	0.30-0.50	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.30-0.50	
5046	0.43-0.48	0.75-1.00	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.20-0.35	
5115	0.13-0.18	0.70-0.90	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.70-0.90	
5120	0.17-0.22	0.70-0.90	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.70-0.90	
5130	0.28-0.33	0.70-0.90	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.80-1.10	
5132	0.30-0.35	0.60-0.80	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.75-1.00	
5135	0.33-0.38	0.60-0.80	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.80-1.05	
5140	0.38-0.43	0.70-0.90	0.035	0.040	0.15 to 0.35	0.15 to 0.35	0.70-0.90	
5145	0.43-0.48	0.70-0.90	0.035	0.040	0.15-0.35	0.15-0.35	0.70-0.90	
5147	0.46-0.51	0.70-0.90	0.035	0.040	0.15-0.35	0.15-0.35	0.85-1.15	

Chemical	Compositio	n - Alloy Ste	eels (Heat (Chemical Ra	inges and Li	mits, percei	nt)	
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
5150	0.48-0.53	0.70-0.90	0.035	0.040	0.15-0.35		0.70-0.90	
5155	0.51-0.59	0.70-0.90	0.035	0.040	0.15-0.35		0.70-0.90	
5160	0.56-0.61	0.75-1.00	0.035	0.040	0.15-0.35		0.70-0.90	
50100	0.98-1.10	0.25-0.45	0.025	0.025	0.15-0.35		0.40-0.60	
51100	0.98-1.10	0.25-0.45	0.025	0.025	0.15-0.35		0.90-1.15	
52100	0.98-1.10	0.25-0.45	0.025	0.025	0.15-0.35		1.30-1.60	
6118	0.16-0.21	0.50-0.70	0.035	0.040	0.15-0.35		0.50-0.70	(0.10-0.15 V)
6150	0.48-0.53	0.70-0.90	0.035	0.040	0.15-0.35		0.80-1.10	(0.15 min V)
8115	0.13-0.18	0.70-0.90	0.035	0.040	0.15-0.35	0.20-0.40	0.30-0.50	0.08-0.15
8615	0.13-0.18	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25
8617	0.15-0.20	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25
8620	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35	0.34-0.60	0.34-0.60	0.15-0.25
8622	0.20-0.25	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8625	0.23-0.28	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25
8627	0.25-0.30	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25
8630	0.28-0.33	0.70-0.90	0.035	0.040	0.15-0.35	0.34-0.60	0.34-0.60	0.15-0.25

Chemical	Compositio	n - Alloy Ste	eels (Heat (Chemical Ro	anges and Li	mits, percei	nt)	
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
8637	0.35-0.40	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8640	0.38-0.43	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8642	0.40-0.45	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8645	0.43-0.48	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8650	048-0.53	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8655	0.51-0.59	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8660	0.56-0.64	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.60	0.40-0.60	0.15-0.25
8720	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.20-0.30
8740	0.38-0.43	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.20-0.30
8822	0.20-0.25	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.30-0.40
9254	0.51-0.59	0.60-0.80	0.035	0.040	1.20-1.60		0.40-0.60	
9255	0.51-0.59	0.70-0.95	0.035	0.040	1.80-2.20		0.40-0.60	
9260	0.56-0.64	0.75-1.00	0.035	0.040	1.80-2.20			
9310	0.08-0.13	0.45-0.65	0.025	0.025	0.15-0.30	3.00-3.50	1.00-1.40	0.08-0.15

Chemical Composition - Alloy Steels (Heat Chemical Ranges and Limits, percent)

- Standard Boron Steels

AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
50B44	0.43-0.48	0.75-1.00	0.035	0.040	0.15 to 0.35		0.20-0.60	
50B46	0.44-0.49	0.75-1.00	0.035	0.040	0.15 to 0.35		0.20-0.35	
50B50	0.48-0.53	0.75-1.00	0.035	0.040	0.15 to 0.35		0.40-0.60	
50B60	0.56-0.64	0.75-1.00	0.035	0.040	0.15 to 0.35		0.40-0.60	
51B60	0.56-0.64	0.75-1.00	0.035	0.040	0.15 to 0.35		0.70-0.90	
81B45	0.43-0.48	0.75-1.00	0.035	0.040	0.15 to 0.35	0.20-0.40	0.35-0.55	0.08-0.15
94B17	0.15-0.20	0.75-1.00	0.035	0.040	0.15 to 0.35	0.30-0.60	0.30-0.50	0.08-0.15
94B30	0.28-0.33	0.75-1.00	0.035	0.040	0.15 to 0.35	0.30-0.60	0.30-0.50	0.08-0.15

NOTES

1. Grades shown in the table above with prefix letter E are normally made only by the basic electric-furnace process. All others are normally

manufactured by the basic open-hearth or basic-oxygen but may be manufactured by the basic electric furnace process with adjustments in phosphorus

and sulfur.

2. The phosphorus and sulfur limitations for each process are as follows:

	Ma	aximum, percent		
	Phosphorus Sulfur			
Basic electric	0.025	0.025		
Basic open-hearth or basic oxygen	0.035	0.040		
Acid electric	0.050	0.050		
Acid open-hearth	0.050	0.050		

3. Small quantities of certain elements are present in alloy steels which are not specified or required. These elements are considered as incidental and

may be present to the following maximum amounts: copper, 0.35 percent; nickel, 0.25 percent; chromium, 0.20 percent and molybdenum, 0.06 percent.

4. Standard alloy steels can be produced with a lead range of 0.15-0.35 percent. Such steels are identified by inserting the letter "L" between the

second and third numerals of the AISI number, for example, 41 L 40. A heat analysis for lead is not determinable, since lead is added to the ladle

stream while each ingot is poured.

5. Boron steels contain .0005/.003 percent boron.

Composition			Carbo	n H-Steels	and S	tandard			
AISI/SAE		С		Mn		P max	S max	Si	
Standard Ca	rbon	H-Steels							
1038H		0.34-0.4	43	0.50-1	.00	0.040	0.050	0.15-0.30	
1045H		0.42-0.	51	0.50-1	.00	0.040	0.050	0.15-0.30	
1522H		0.17-0.2	25	1.00-1	.50	0.040	0.050	0.15-0.30	
1524H		0.18-0.2	26	1.25-1.7	'5(a)	0.040	0.050	0.15-0.30	
1526H		0.21-0.3	30	1.25-1.7	'5(a)	0.040	0.050	0.15-0.30	
1541H		0.35-0.4	45	0.70-1.20		0.040	0.050	0.15-0.30	
Standard Ca	rbon	Boron H-S	teels						
15B21H	0	0.17-0.24	0.	70-1.20		0.040	0.050	0.15-0.30	
15B35H	0	0.31-0.39	1.0	00-1.50		0.040	0.050	0.15-0.30	
15B37H	0	0.30-0.39	1.2	5-1.75(a)		0.040	0.050	0.15-0.30	
15B41H	0	0.35-0.45	0.9	0-1.00		0.040	0.050	0.15-0.30	
15B48H	0	0.43-0.53	1.0	0-1.50		0.040	0.050	0.15-0.30	
15B62H	0	0.54-0.67	1.0	00-1.50		0.040	0.050	0.40-0.60	

(a) Standard AISI-SAE H-Steels with 1.75 manganese maximum are classified as carbon steels.

Compositi	ons of Stanc	lard Alloy H-	·Steels (Per	centage)				
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
1330H	0.27-0.33	1.45-2.05	0.035	0.040	0.15-0.30			
1335H	0.32-0.38	1.45-2.05	0.035	0.040	0.15-0.30			
1340H	0.37-0.44	1.45-2.05	0.035	0.040	0.15-0.30			
1345H	0.42-0.49	1.45-2.05	0.035	0.040	0.15-0.30			
4027H	0.24-0.30	0.60-1.00	0.035	0.040	0.15-0.30			0.20-0.30
4038H	0.24-0.30	0.60-1.00	0.035	0.035- 0.050	0.15-0.30			0.20-0.30
4032H	0.29-0.35	0.60-1.00	0.035	0.040	0.15-0.30			0.20-0.30
4037H	0.34-0.41	0.60-1.00	0.035	0.040	0.15-0.30			0.20-0.30
4042H	0.39-0.46	0.60-1.00	0.035	0.040	0.15-0.30			0.20-0.30
4047H	0.44-0.51	0.60-1.00	0.035	0.040	0.15-0.30		0.30-0.70	0.20-0.30
4118H	0.17-0.23	0.60-1.00	0.035	0.040	0.15-0.30		0.75-1.20	0.20-0.30
4130H	0.27-0.33	0.30-0.70	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25
4135H	0.32-0.38	0.60-1.10	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25
4137H	0.34-0.41	0.60-1.10	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25
4140H	0.37-0.44	0.65.1.10	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25
4142H	0.39-0.46	0.65-1.10	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25
4145H	0.42-0.49	0.65-1.10	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25
4147H	0.44-0.51	0.65-1.10	0.035	0.040	0.15-0.30		0.75-1.20	0.15-0.25

Compositi	ons of Stanc	lard Alloy H	-Steels (Per	centage)				
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
4150H	0.47-0.54	0.65-1.10	0.035	0.040	0.15-0.30		0.65-0.95	0.15-0.25
4161H	0.55-0.65	0.65-1.10	0.035	0.040	0.15-0.30	1.55-2.00	0.35-0.65	0.25-0.35
4320H	0.17-0.23	0.40-0.70	0.035	0.040	0.15-0.30	1.55-2.00	0.65-0.95	0.20-0.30
4340H	0.37-0.44	0.55-0.90	0.035	0.040	0.15-0.30	1.55-2.00	0.65-0.95	0.20-0.30
4620H	0.17-0.23	0.35-0.75	0.035	0.040	0.15-0.30	0.65-1.05		0.20-0.30
4626H	0.23-0.29	0.40-0.70	0.035	0.040	0.15-0.30	0.85-1.25	0.30-0.60	0.15-0.25
4720H	0.17-0.23	0.45-0.75	0.035	0.040	0.15-0.30	3.20-3.80		0.15-0.25
4815H	0.12-0.18	0.30-0.70	0.035	0.040	0.15-0.30	3.20-3.80		0.20-0.30
4817H	0.14-0.20	0.30-0.70	0.035	0.040	0.15-0.30	3.20-3.80		0.20-0.30
4820H	0.17-0.23	0.40-1.80	0.035	0.040	0.15-0.30		0.13-0.43	0.20-0.30
5046H	0.43-0.50	0.65-1.10	0.035	0.040	0.15-0.30		0.60-1.00	
5120H	0.17-0.23	0.60-1.00	0.035	0.040	0.15-0.30		0.75-1.23	
5130H	0.27-0.33	0.60-1.00	0.035	0.040	0.15-0.30		0.65-1.13	
5132H	0.29-0.35	0.50-0.90	0.035	0.040	0.15-0.30		0.70-1.15	
5135H	0.32-0.38	0.50-1.00	0.035	0.040	0.15-0.30		0.60-1.00	
5140H	0.37-0.44	0.60-1.00	0.035	0.040	0.15-0.30		0.60-1.00	
5150H	0.47-0.54	0.60-1.00	0.035	0.040	0.15-0.30		0.60-1.00	
5155H	0.50-0.60	0.60-1.00	0.035	0.040	0.15-0.30		0.60-1.00	

Compositi	ons of Stanc	lard Alloy H-	·Steels (Per	centage)				
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
5160H	0.55-0.65	0.65-1.00	0.035	0.040	0.15-0.30		0.40-0.80	0.10-0.15
6118H	0.15-0.21	0.40-0.80	0.035	0.040	0.15-0.30		0.40-0.80	
6150H	0.47-0.54	0.60-1.00	0.035	0.040	0.15-0.30		0.75-1.20	
8617H	0.14-0.20	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8620H	0.17-0.23	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8622H	0.19-0.25	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8625H	0.22-0.28	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8627H	0.24-0.30	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8630H	0.27-0.33	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8637H	0.34-0.41	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8640H	0.37-0.44	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8642H	0.39-0.46	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8645H	0.42-0.49	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8650H	0.47-0.54	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8655H	0.50-0.60	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8660H	0.55-0.65	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
8720H	0.17-0.23	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.20-0.30
8740H	0.37-0.44	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.20-0.30

Composition	Compositions of Standard Alloy H-Steels (Percentage)												
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо					
8822H	0.19-0.25	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.30-0.40					
9260H	0.55-0.65	0.65-1.10	0.035	0.040	1.70-2.20								
9310H	0.07-0.13	0.40-0.70	0.035	0.040	0.15-0.30	2.95-3.55	1.00-1.45	0.08-0.15					

Composition	ons of Stand	lard Born (A	ılloy) H-Stee	els				
AISI/SAE	С	Mn	P max	S max	Si	Ni	Cr	Мо
50B40H	0.37-0.44	0.65-1.10	0.035	0.040	0.15-0.30		0.30-0.70	
50B44H	0.42-0.49	0.65-1.10	0.035	0.040	0.15-0.30		0.30-0.70	
50B46H	0.43-0.50	0.65-1.10	0.035	0.040	0.15-0.30		0.13-0.43	
50B50H	0.47-0.54	0.65-1.10	0.035	0.040	0.15-0.30		0.30-0.70	
50B60H	0.55-0.65	0.65-1.10	0.035	0.040	0.15-0.30		0.30-0.70	
51B60H	0.55-0.65	0.65-1.10	0.035	0.15-0.30		0.60-1.00		
81B45H	0.42-0.49	0.70-1.05	0.035	0.040	0.15-0.030	0.15-0.45	0.30-0.60	0.15-0.25
86B30H	0.27-0.33	0.60-0.95	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.15-0.25
86B45H	0.42-0.49	0.70-1.05	0.035	0.040	0.15-0.30	0.35-0.75	0.35-0.65	0.08-0.15
94B15H	0.12-0.18	0.70-1.05	0.035	0.040	0.15-0.30	0.25-0.65	0.25-0.55	0.08-0.15
94B17H	0.14-0.20	0.70-1.05	0.035	0.040	0.15-0.30	0.25-0.65	0.25-0.65	0.08-0.15
94B39H	0.27	0.33	0.70-0.33	0.70-1.05	0.035	0.25-0.65	0.25-0.55	0.08-0.15

Conver	Conversion for Impact Energy Values												
Joules	Ft-Lbs	Joules	Ft-Lbs	Joules	Ft-Lbs	Joules	Ft-Lbs	Joules	Ft-Lbs	Joules	Ft-Lbs		
10	7	26	19	42	31	58	43	74	55	90	66		
11	8	27	20	43	32	59	44	75	55	91	67		
12	9	28	21	44	33	60	44	76	56	92	68		
13	10	29	21	45	33	61	45	77	57	93	69		
14	10	30	22	46	34	62	46	78	58	94	69		
15	11	31	23	47	35	63	47	79	58	95	70		
16	12	32	24	48	36	64	47	80	59	96	71		
17	13	33	24	49	37	65	48	81	60	97	72		
18	13	34	25	50	37	66	49	82	61	98	72		
19	14	35	26	51	38	67	49	83	61	99	73		
20	15	36	27	52	38	68	50	84	62	100	74		
21	16	37	27	53	39	69	51	85	63				
22	16	38	28	54	40	70	52	86	63				
23	17	39	29	55	41	71	52	87	64				
24	18	40	30	56	41	72	53	88	65				
25	18	41	30	57	42	73	54	89	66				

T	UNS	_	A 4	C:	C	V1 2	-	_	O+1-
Туре	Designation	С	Mn	Si	Cr	Ni	Р	S	Other
ustenitic	types								
201	S20100	0.15	5.5-7.5	1.00	16.0-18.0	3.5-5.5	0.06	0.03	0.25 N
202	S20200	0.15	7.5-10.0	1.00	17.0-19.0	4.0-6.0	0.06	0.03	0.25 N
205	S20500	0.12- 0.25	14.0- 15.5	1.00	16.5-18.0	1.0-1.75	0.06	0.03	0.32-0.40 N
301	S30100	0.15	2.00	1.00	16.0-18.0	6.0-8.0	0.045	0.03	
302	S30200	0.15	2.00	1.00	17.0-19.0	8.0-10.0	0.045	0.03	
3302B	S30215	0.15	2.00	2.0-3.0	17.0-19.0	8.0-10.0	0.045	0.03	
303	S30300	0.15	2.00	1.00	17.0-19.0	8.0-10.0	0.20	0.15 min	0.6 Mo(b)
303Se	S30323	0.15	2.00	1.00	17.0-19.0	8.0-10.0	0.20	0.06	0.15 min Se
304	S30400	0.08	2.00	1.00	18.0-20.0	8.0-10.5	0.045	0.03	
304H	330409	0.04- 0.10	2.00	1.00	18.0-20.0	8.0-10.5	0.045	0.03	
304L	S30403	0.03	2.00	1.00	18.0-20.0	8.0-12.0	0.045	0.03	
304LN	S30453	0.03	2.00	1.00	18.0-20.0	8.0-12.0	0.045	0.03	0.10-0.16 N
302Cu	S30430	0.08	2.00	1.00	17.0-19.0	8.0-10.0	0.045	0.03	3.0-4.0 Cu
304N	S30451	0.08	2.00	1.00	18.0-20.0	8.0-10.5	0.045	0.03	0.10-0.16 N
305	S30500	0.12	2.00	1.00	17.0-19.0	10.5-13.0	0.045	0.03	
308	S30800	0.08	2.00	1.00	19.0-21.0	10.0-12.0	0.045	0.03	

Туре	UNS Designation	С	Mn	Si	Cr	Ni	Р	S	Other
309	S30900	0.20	2.00	1.00	22.0-24.0	12.0-15.0	0.045	0.03	
309S	S30908	0.08	2.00	1.00	22.0-24.0	12.0-15.0	0.045	0.03	
310	S31000	0.25	2.00	1.50	24.0-26.0	19.0-22.0	0.045	0.03	
310S	S31008	0.08	2.00	1.50	24.0-26.0	19.0-22.0	0.045	0.03	
314	S31400	0.25	2.00	1.5-3.0	23.0-26.0	19.0-22.0	0.045	0.03	
316	S31600	0.08	2.00	1.00	16.0-18.0	10.0-14.0	0.045	0.03	2.0-3.0 Mo
316F	S31620	0.08	2.00	1.00	16.0-18.0	10.0-14.0	0.20	0.10 min	1.75-2.5 Mo
316H	S31609	0.04- 0.10	2.00	1.00	16.0-18.0	10.0-14.0	0.045	0.03	2.0-3.0 Mo
316L	S31603	0.03	2.00	1.00	16.0-18.0	10.0-14.0	0.045	0.03	2.0-3.0 Mo
316LN	S31653	0.03	2.00	1.00	16.0-18.0	10.0-14.0	0.045	0.03	2.0-3.0 Mo; 0.10-0.16 N
316N	S31651	0.08	2.00	1.00	16.0-18.0	10.0-14.0	0.045	0.03	2.0-3.0 Mo; 0.10-0.16 N
317	S31700	0.08	2.00	1.00	18.0-20.0	11.0-15.0	0.045	0.03	3.0-4.0 Mo
317L	S31703	0.03	2.00	1.00	18.0-20.0	11.0-15.0	0.045	0.03	3.0-4.0 Mo
321	S32100	0.08	2.00	1.00	17.0-19.0	9.0-12.0	0.045	0.03	5 x %C min T
321H	S32109	0.04- 0.10	2.00	1.00	17.0-19.0	9.0-12.0	0.045	0.03	5 x %C min T
330	N08330	0.08	2.00	0.75-1.5	17.0-20.0	34.0-37.0	0.04	0.03	
347	S34700	0.08	2.00	1.00	17.0-19.0	9.0-13.0	0.045	0.03	10 x %C min

Composit	ions of Standa	ard Stainl	ess Steels	(Percent	age)				
Туре	UNS Designation	С	Mn	Si	Cr	Ni	Р	S	Other
347H	S34709	0.04- 0.10	2.00	1.00	17.0-19.0	9.0-13.0	0.045	0.03	8 x %C min - 1.0 max Nb
348	S34800	0.08	2.00	1.00	17.0-19.0	9.0-13.0	0.045	0.03	0.2 Co; 10 x %C min Nb; 0.10 Ta
348H	S34809	0.04- 0.10	2.00	1.00	17.0-19.0	9.0-13.0	0.045	0.03	0.2 Co; 8 x %C min - 1.0 max Nb; 0.10 Ta
384	S38400	0.08	2.00	1.00	15.0-17.0	17.0-19.0	0.045	0.03	
Ferritic ty	pes								
405	S40500	0.08	1.00	1.00	11.5-14.5		0.04	0.03	0.10-0.30 A1
409	S40900	0.08	1.00	1.00	10.5- 11.75	0.50	0.045	0.045	6 x %C min - 0.75 max Ti
429	S42900	0.12	1.00	1.00	14.0-16.0		0.04	0.03	
430	S43000	0.12	1.00	1.00	16.0-18.0		0.04	0.03	
430F	S43020	0.12	1.25	1.00	16.0-18.0		0.06	0.15 min	0.6 Mo(b)
430FSe	S43023	0.12	1.25	1.00	16.0-18.0		0.06	0.06	0.15 min Se
434	S43400	0.12	1.00	1.00	16.0-18.0		0.04	0.03	0.75-1.25 MO
436	S43600	0.12	1.00	1.00	16.0-18.0		0.04	0.03	0.75-1.25 Mo; 5 X %C MIN - 0.70 max Nb
439	S43035	0.07	1.00	1.00	17.0-19.0	0.50	0.04	0.03	0.15 A1; 12 x %C min - 1.10 Ti
442	S44200	0.20	1.00	1.00	18.0-23.0		0.04	0.03	
444	S44400	0.025	1.00	1.00	17.5-19.5	1.00	0.04	0.03	1.75-2.50 Mo; 0.025 N; 0.2 + 4 (%C + %N) min - 0.8 max (Ti + Nb)

Туре	UNS Designation	С	Mn	Si	Cr	Ni	Р	S	Other
446	S44600	0.20	1.50	1.00	23.0-27.0		0.04	0.03	0.25 N
Ouplex (fe	erritic-austeniti	c) type							
329	S32900	0.20	1.00	0.75	23.0-28.0	2.50-5.00	0.040	0.030	.00-2.00 Mo
Vlartensit	ic types								
403	S40300	0.15	1.00	0.50	11.513.0		0.04	0.03	
410	S41000	0.15	1.00	1.00	11.5-13.5		0.04	0.03	
414	S41400	0.15	1.00	1.00	11.5-13.5	1.25-2.50	0.04	0.03	
416	S41623	0.15	1.25	1.00	12.0-14.0		0.06	0.15 min	0.6 Mo(b)
416Se	S41600	0.15	1.25	1.00	12.0-14.0		0.06	0.06	0.15 min Se
420	S42000	0.15 min	1.00	1.00	12.0-14.0		0.04	0.03	
420F	S42020	0.15 min	1.25	1.00	12.0	14.0		0.06	0.15 min 0.6 Mo(b)
422	S42200	0.20- 0.25	1.00	0.75	11.5-13.5	0.5-1.0	0.04	0.03	0.75-1.25 Mo; 0.75-1.25 W; 0.15-0.3 V
431	S43100	0.20	1.00	1.00	15.0-17.0	1.25-2.50	0.04	0.03	
440A	S44002	0.60- 0.75	1.00	1.00	16.0-18.0		0.04	0.03	0.75 Mo
440B	S44003	0.75- 0.95	1.00	1.00	16.0-18.0		0.04	0.03	0.75 Mo
440C	S44004	0.95- 1.20	1.00	1.00	16.0-18.0		0.04	0.03	0.75 Mo

Compositions of Standard Stainless Steels (Percentage)												
Туре	UNS Designation	С	Mn	Si	Cr	Ni	Р	S	Other			
Precipitation	on-hardening t	types										
PH 13-8 Mo	S13800	0.05	0.20	0.10	12.25- 13.25	7.5-8.5	0.01	0.008	2.0-2.5 Mo; 0.90-1.35 A1; 0.01 N			
15-5 PH	S15500	0.07	1.00	1.00	14.0-15.5	3.5-5.5	0.04	0.03	2.5-4.5 Cu; 0.15-0.45 Nb			
17-4 PH	S17400	0.07	1.00	1.00	15.5-17.5	3.0-5.0	0.04	0.03	3.0-5.0 cu; 0.15-0.45 Nb			
17-7 PH	S17700	0.09	1.00	1.00	16.0-18.0	6.5-18.0	6.5-7.75	0.04	0.040.75-1.5 A1			

- (a) Single values are maximum values unless otherwise indicated.
- (b) Optional

Conversion

Conversion for Stress Values ksi to MPa

The middle column of figures contains the reading (in MPa or ksi) to be converted. If converting from ksi to MPa equivalent in

the column headed "MPa". If converting from MPa to ksi, read the ksi equivalent in the column headed "ksi".

					<u> </u>						
ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
0.14504	1	6.895	3.9160	27	186.16	7.6870	53	365.42	11.603	80	551.58
0.29008	2	13.790	4.0611	28	193.05	7.8320	54	372.32	11.748	81	558.48
0.43511	3	20.684	4.2061	29	199.95	7.9771	55	379.21	11.893	82	565.37
0.58015	4	27.579	4.3511	30	206.84	8.1221	56	386.11	12.038	83	572.26
0.72519	5	34.474	4.4962	31	213.74	8.2672	57	393.00	12.183	84	579.16
0.87023	6	41.369	4.6412	32	220.63	8.4122	58	399.90	12.328	85	586.05
1.0153	7	48.263	4.7862	33	227.53	8.5572	59	406.79	12.473	86	592.95
1.1603	8	55.158	4.9313	34	234.42	8.7023	61	413.69	12.168	87	599.84
1.3053	9	62.053	5.0763	35	241.32	8.8473	62	420-58	12.763	88	606.74
1.4504	10	68.948	5.2214	36	248.21	8.992	63	427.47	12.909	89	613.63
1.5954	11	75.842	5.3664	37	255.11	9.1374	64	434.37	13.053	90	620.53
1.7405	12	82.737	5.5114	38	262.00	9.2824	65	441.26	13.198	91	627.42
1.8855	13	89.632	5.6565	39	268.90	9.4275	66	448.16	13.343	92	634.32
2.0305	14	96.527	5.8015	40	275.79	9.5725	67	455.05	13.489	93	641.21
2.1756	15	103.42	5.9465	41	282.69	9.8626	68	468.84	13.634	94	648.11
2.3206	16	110.32	6.0916	42	289.58	10.008	69	475.74	13.779	95	655.00
2.4656	17	117.21	6.2366	43	296.47	10.153	70	482.63	13.924	96	661.90
2.6107	18	124.11	6.3817	44	303.37	10.298	71	489.53	14.069	97	668.79
2.7557	19	131.00	6.5267	45	310.26	10.443	72	496.42	14.214	98	675.69
2.9008	20	137.90	6.6717	46	317.16	10.588	73	503.32	14.359	99	682.58
3.0458	21	144.79	6.8168	47	324.05	10.732	74	510.21	14.504	100	689.48
3.1908	22	151.68	6.9618	48	330.95	10.878	75	517.11	15.954	110	758.42
3.3359	23	158.58	7.1068	49	337.84	11.023	76	524.00	17.405	120	827.37
3.4809	24	165.47	7.2519	50	344.74	11.168	77	530.90	18.855	130	896.32
3.6259	25	172.37	7.3969	51	351.63	11.313	78	537.79	20.305	140	965.27

3.7710 26 179.26 7.5420 52 358.53 11.458 79 544.69 21.756 150 1034.2

Conversion for Stress Values ksi to MPa

The middle column of figures contains the reading (in MPa or ksi) to be converted. If converting from ksi to MPa equivalent in

the column headed "MPa". If converting from MPa to ksi, read the ksi equivalent in the column headed "ksi".

		.,									
ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
23.206	160	1103.2	66.717	460	3171.6	107.33	740		153.74	1060	
24.656	170	1172.1	68.168	470	3240.5	108.78	750		156.64	1080	
26.107	180	1241.1	69.618	480	3309.5	110.23	760		159.54	1100	
27.557	190	1310.0	71.068	490	3378.4	111.68	770		162.44	1120	
29.008	200	1379.0	72.519	500	3447.4	113.13	780		165.34	1140	
30.458	210	1447.9	40.611	280	1930.5	114.58	790		168.24	1160	
31.908	220	1516.8	73.969	510		116.03	800		171.14	1180	
33.359	230	1585.8	75.420	520		117.48	810		174.05	1200	
34.809	240	1654.7	76.870	530		118.93	820		176.95	1220	
36.259	250	1723.7	78.320	540		120.38	830		179.85	1240	
37.710	260	1792.6	79.771	550		121.83	840		182.75	1260	
40.611	280	1930.5	81.221	560		123.28	850		185.65	1280	
42.061	290	1999.5	82.672	570		124.73	860		188.55	1300	
43.511	300	2068.4	84.122	580		126.18	870		191.45	1320	
44.962	310	2137.4	85.572	590		127.63	880		194.35	1340	
46.412	320	2206.3	87.023	600		129.08	890		197.25	1360	
47.862	330	2275.3	88.473	610		130.53	900		200.15	1380	
49.313	340	2344.2	89.923	620		131.98	910		203.05	1400	
50.763	350	2413.2	91.374	630		133.43	920		205.95	1420	
52.214	360	2482.1	92.824	640		134.89	930		208.85	1440	
53.664	370	2551.1	94.275	650		136.34	940		211.76	1460	
55.114	380	2620.0	95.725	660		137.79	950		214.66	1480	
56.565	390	2689.0	97.175	670		139.24	960		217.56	1500	
58.015	400	2757.9	98.626	680		140.69	970		220.46	1520	
59.465	410	2826.9	100.08	690		142.14	980		223.36	1540	
60.916	420	2895.8	101.53	700		143.59	990		226.26	1560	
62.366	430	2964.7	102.98	710		145.04	1000		229.16	1580	

63.817	440	3033.7	104.43	720	 147.94	1020	 232.06	1600	
65.267	450	3102.6	105.88	730	 150.84	1040	 234.96	1620	

Conversion for Stress Values ksi to MPa

The middle column of figures contains the reading (in MPa or ksi) to be converted. If converting from ksi to MPa equivalent in

the column headed "MPa". If converting from MPa to ksi, read the ksi equivalent in the column headed "ksi".

ksi		MPa									
237.86	1640		269.77	1860		304.58	2100		336.49	2320	
240.76	1660		272.67	1880		307.48	2120		339.39	2340	
243.66	1680		275.57	1900		310.38	2140		342.29	2360	
246.56	1700		278.47	1920		313.28	2160		345.19	2380	
249.46	1720		281.37	1940		316.18	2180		348.09	2400	
182.75	1260		284.27	1960		319.08	2200		350.99	2420	
252.37	1740		287.17	1980		321.98	2220		353.89	2440	
255.27	1760		290.08	2000		324.88	2240		356.79	2460	
258.17	1780		292.98	2020		327.79	2260		359.69	2480	
261.07	1800		295.88	2040		330.69	2280		362.59	2500	
263.97	1820		298.78	2060		307.48	2120		339.39	2340	
266.87	1840		301.68	2080		333.59	2300				

¹ ksi = 6.894757 MPa 1 psi = 6.894757 kPa

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
	-458	-272.22		-402	-241.11		-346	-210.00		-290	-178.89
	-456	-271.11		-400	-240.00		-344	-208.89		-288	-177.78
	-454	-270.00		-398	-238.89		-342	-207.78		-286	-176.67
	-452	-268.89		-396	-237.78		-340	-206.67		-284	-175.56
	-450	-267.78		-394	-236.67		-338	-205.56		-282	-174.44
	-448	-266.67		-392	-235.56		-336	-204.44		-280	-173.33
	-446	-265.56		-390	-234.44		-334	-203.33		-278	-172.22
	-444	-264.44		-388	-233.33		-332	-202.22		-276	-171.11
	-442	-263.33		-386	-232.22		-330	-201.11		-274	-170.00
	-440	-262.22		-384	-231.11		-328	-200.00	-457.6	-272	-168.89
	-438	-261.11		-382	-230.00		-326	-198.89	-454.0	-270	-167.78
	-436	-260.00		-380	-228.89		-324	-197.78	-450.4	-268	-166.67
	-434	-258.89		-378	-227.78		-322	-196.67	-446.8	-266	-165.56
	-432	-257.78		-376	-226.67		-320	-195.56	-443.2	-264	-164.44
	-430	-256.67		-374	-225.56		-318	-194.44	-439.6	-262	-163.33
	-428	-255.56		-372	-224.44		-316	-193.33	-436.0	-260	-162.22
	-426	-254.44		-370	-223.33		-314	-192.22	-432.4	-258	-161.11
	-424	-253.33		-368	-222.22		-312	-191.11	-428.8	-256	-160.00
	-422	-252.22		-366	-221.11		-310	-190.00	-425.2	-254	-158.89
	-420	-251.11		-364	-220.00		-308	-188.89	-421.6	-252	-157.78
	-418	-250.00		-362	-218.89		-306	-187.78	-418.0	-250	-156.67
	-416	-248.89		-360	-217.78		-304	-186.67	-414.4	-248	-155.56
	-414	-247.78		-358	-216.67		-302	-185.56	-410.8	-246	-154.44
	-412	-246.67		-356	-215.56		-300	-184.44	-407.2	-244	-153.33
	-410	-245.56		-354	-214.44		-298	-183.33	-403.6	-242	-152.22
	-408	-244.44		-352	-213.33		-296	-182.22	-400.0	-240	-151.11
	-406	-243.33		-350	-212.22		-294	-181.11	-396.4	-238	-150.00
	-404	-242.22		-348	-211.11		-292	-180.00	-392.8	-236	-148.89

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
-389.2	-238	-150.00		-182	-118.89	-194.8	-126	-87.78	-94.0	-70	-56.67
-385.6	-236	-148.89		-180	-117.78	-191.2	-124	-86.67	-90.4	-68	-55.56
-382.0	-234	-147.78		-178	-116.67	-187.6	-122	-85.56	-86.8	-66	-54.44
-378.4	-232	-146.67		-176	-115.56	-184.0	-120	-84.44	-83.2	-64	-53.33
-374.8	-230	-145.56		-174	-114.44	-180.4	-118	-83.33	-79.6	-62	-52.22
-371.2	-228	-144.44		-172	-113.33	-176.8	-116	-82.22	-76.0	-60	-51.11
-367.6	-226	-143.33		-170	-112.22	-173.2	-114	-81.11	-72.4	-58	-50.00
-364.0	-224	-142.22		-168	-111.11	-169.6	-112	-80.00	-68.8	-56	-48.89
-360.4	-222	-141.11		-166	-110.00	-166.0	-110	-78.89	-65.2	-54	-47.78
-356.8	-220	-140.00		-164	-108.89	-162.4	-108	-77.78	-61.6	-52	-46.67
-353.2	-218	-138.89		-162	107.78	-158.8	-106	-76.67	-58.0	-50	-45.56
-349.6	-216	-137.78		-160	-106.67	-155.2	-104	-75.56	-54.4	-48	-44.44
346.0	-214	-136.67		-158	-105.56	-151.6	-102	-74.44	-50.8	-46	-43.33
-342.4	-212	-135.56		-156	-104.44	-148.0	-100	-73.33	-47.2	-44	-42.22
-338.8	-210	-134.44		-154	-103.33	-144.4	-98	-72.22	-43.6	-42	-41.11
-335.2	-208	-133.33		-152	-102.22	-140.8	-96	-71.11	-40.0	-40	-40.00
-331.6	-206	-132.22		-150	-101.11	-137.2	-94	-70.00	-36.4	-38	-38.89
-328.0	-204	-131.11		-148	-100.00	-133.6	-92	-68.89	-32.8	-36	-37.78
-324.4	-202	-130.00		-146	-98.89	-130.0	-90	-67.78	-29.2	-34	-36.67
-320-8	-200	-128.89		-144	-97.78	-126.4	-88	-66.67	-25.6	-32	-35.56
-317.2	-198	-127.78		-142	-96.67	-122.8	-86	-65.56	-22.0	-30	-34.44
-313.6	-196	-126.67		-140	-95.56	-119.2	-84	-64.44	-18.4	-28	-33.33
-310.0	-194	-125.56		-138	-94.44	-115.6	-82	-63.33	-14.8	-26	-32.22
-306.4	-192	-124.44		-136	-93.33	-112.0	-80	-62.22	-11.2	-24	-31.11
-302.8	-190	-123.33		-134	-92.22	-108.4	-78	-61.11	-7.6	-22	-30.00
-299.2	-188	-122.22		-132	-91.11	-104.8	-76	-60.00	-4.0	-20	-28.89
-295.6	-186	-121.11		-130	-90.00	-101.2	-74	-58.89	04	-18	-27.78

-292.0	-184	-120.00		-128	-88.89	-97.6	-72	-57.78	+3.2	-16	-26.67
--------	------	---------	--	------	--------	-------	-----	--------	------	-----	--------

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
+6.8	-14	-25.56	107.6	42	5.56	197.6	92	33.33	298.4	148	64.44
+10.4	-12	-24.44	111.2	44	6.67	201.2	94	34.44	302.0	150	.56
+14.0	-10	-23.33	114.8	46	7.78	204.8	96	35.56	305.6	152	66.67
+17.6	-8	-22.22	118.4	48	8.89	208.4	98	36.67	309.2	154	67.78
+21.2	-6	-21.11	122.0	50	10.00	212.0	100	37.78	312.8	156	68.89
+24.8	-4	-20.00	125.6	52	11.11	215.6	102	38.89	316.4	158	70.00
+28.4	-2	-18.89	129.2	54	12.22	219.2	104	40.00	320.0	160	71.11
+32.0	0	-17.78	132.8	56	13.33	222.8	106	41.11	323.6	162	72.22
+35.6	2	-16.67	136.4	58	14.44	226.4	108	42.22	327.2	164	73.33
+39.2	4	-15.56	140.0	60	15.56	230.0	110	43.33	330.8	166	74.44
+42.8	6	-14.44	143.6	62	16.67	233.6	112	44.44	334.4	168	75.56
+46.4	8	-13.33	147.2	64	17.78	237.2	114	45.56	338.0	170	76.67
+50.0	10	-12.22	150.8	66	18.89	240.8	116	46.67	341.6	172	77.78
+53.6	12	-11.11	154.4	68	20.00	244.4	118	47.78	345.2	174	78.89
+57.2	14	-10.00	158.0	70	21.11	248.0	120	48.89	348.8	176	80.00
+60.8	16	-8.89	161.6	72	22.22	251.6	122	50.00	352.4	178	81.11
+64.4	18	-7.78	165.2	74	23.33	255.2	124	51.11	356.0	180	82.22
+68.0	20	-6.67	168.8	76	24.44	258.8	126	52.22	359.6	182	83.33
+71.6	22	-5.56	172.4	78	25.56	262.4	128	53.33	363.2	184	84.44
+75.2	24	-4.44	176.0	80	26.67	266.0	130	54.44	366.8	186	85.56
+78.8	26	-3.33	179.6	82	27.78	296.6	132	55.56	370.4	188	86.67
+82.4	28	-2.22	183.2	84	28.89	273.2	134	56.67	374.0	190	87.78
+86.0	30	-1.11	186.8	86	30.00	276.8	136	57.78	377.6	192	88.89
+89.6	32	+0.00	190.4	88	31.11	280.4	138	58.89	381.2	194	90.00
+93.2	34	+1.11	194.0	90	32.22	284.0	140	60.00	384.8	196	91.11

+96.8	36	+2.22	 92	5.56	287.6	142	61.11	388.4	198	92.22
+100.4	38	+3.33	 94	6.67	291.2	144	62.22	392.0	200	93.33
+104.0	40	+4.44	 96	7.78	294.8	146	63.33	395.6	202	94.44

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
+6.8	-14	-25.56	107.6	42	5.56	197.6	92	33.33	298.4	148	64.44
+10.4	-12	-24.44	111.2	44	6.67	201.2	94	34.44	302.0	150	.56
+14.0	-10	-23.33	114.8	46	7.78	204.8	96	35.56	305.6	152	66.67
+17.6	-8	-22.22	118.4	48	8.89	208.4	98	36.67	309.2	154	67.78
+21.2	-6	-21.11	122.0	50	10.00	212.0	100	37.78	312.8	156	68.89
+24.8	-4	-20.00	125.6	52	11.11	215.6	102	38.89	316.4	158	70.00
+28.4	-2	-18.89	129.2	54	12.22	219.2	104	40.00	320.0	160	71.11
+32.0	0	-17.78	132.8	56	13.33	222.8	106	41.11	323.6	162	72.22
+35.6	2	-16.67	136.4	58	14.44	226.4	108	42.22	327.2	164	73.33
+39.2	4	-15.56	140.0	60	15.56	230.0	110	43.33	330.8	166	74.44
+42.8	6	-14.44	143.6	62	16.67	233.6	112	44.44	334.4	168	75.56
+46.4	8	-13.33	147.2	64	17.78	237.2	114	45.56	338.0	170	76.67
+50.0	10	-12.22	150.8	66	18.89	240.8	116	46.67	341.6	172	77.78
+53.6	12	-11.11	154.4	68	20.00	244.4	118	47.78	345.2	174	78.89
+57.2	14	-10.00	158.0	70	21.11	248.0	120	48.89	348.8	176	80.00
+60.8	16	-8.89	161.6	72	22.22	251.6	122	50.00	352.4	178	81.11
+64.4	18	-7.78	165.2	74	23.33	255.2	124	51.11	356.0	180	82.22
+68.0	20	-6.67	168.8	76	24.44	258.8	126	52.22	359.6	182	83.33
+71.6	22	-5.56	172.4	78	25.56	262.4	128	53.33	363.2	184	84.44
+75.2	24	-4.44	176.0	80	26.67	266.0	130	54.44	366.8	186	85.56
+78.8	26	-3.33	179.6	82	27.78	296.6	132	55.56	370.4	188	86.67
+82.4	28	-2.22	183.2	84	28.89	273.2	134	56.67	374.0	190	87.78
+86.0	30	-1.11	186.8	86	30.00	276.8	136	57.78	377.6	192	88.89

+89.6	32	+0.00	190.4	88	31.11	280.4	138	58.89	381.2	194	90.00
+93.2	34	+1.11	194.0	90	32.22	284.0	140	60.00	384.8	196	91.11
+96.8	36	+2.22		92	5.56	287.6	142	61.11	388.4	198	92.22
+100.4	38	+3.33		94	6.67	291.2	144	62.22	392.0	200	93.33
+104.0	40	+4.44		96	7.78	294.8	146	63.33	395.6	202	94.44

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa									
399.2	204	95.56	500.0	260	126.67	600.8	316	157.78	701.6	372	188.89
402.8	206	96.67	503.6	262	127.78	604.4	318	158.89	705.2	374	190.00
406.4	208	97.78	507.2	264	128.89	608.0	320	160.00	708.8	376	191.11
410.0	210	98.89	510.8	266	130.00	611.6	322	161.11	712.4	378	192.22
413.6	212	100.00	514.4	268	131.11	615.2	324	162.22	716.0	380	193.33
417.2	214	101.11	518.0	270	132.22	618.8	326	163.33	719.6	382	194.44
420.8	216	102.22	521.6	272	133.33	622.4	328	164.44	723.2	384	195.56
424.4	218	103.33	525.2	274	134.44	626.0	330	165.56	726.8	386	196.67
428.0	220	104.44	528.8	276	135.56	629.6	332	166.67	730.4	388	197.78
431.6	222	105.56	532.4	278	136.67	633.2	334	167.78	734.0	390	198.89
435.2	224	106.67	536.0	280	137.78	636.8	336	168.89	737.6	392	200.00
438.8	226	107.78	539.6	282	138.89	640.4	338	170.00	741.2	394	201.11
442.4	228	108.89	543.2	284	140.00	644.0	340	171.11	744.8	396	202.22
446.0	230	110.00	546.8	286	141.11	647.6	342	172.22	748.4	398	203.33
449.6	232	111.11	550.4	288	142.22	651.2	344	173.33	752.0	400	204.44
453.2	234	112.22	554.0	290	143.33	654.8	346	174.44	755.6	402	205.56
456.8	236	113.33	557.6	292	144.44	658.4	348	175.56	759.2	404	206.67
460.4	238	114.44	561.2	294	145.56	662.0	350	176.67	762.8	406	207.78
464.0	240	115.56	564.8	296	146.67	665.6	352	177.78	766.4	408	208.89
467.6	242	116.67	568.4	298	147.78	669.2	354	178.89	770.0	410	210.00
471.2	244	117.78	572.0	300	148.89	672.8	356	180.00	773.6	412	211.11

474.8	246	118.89	575.6	302	150.00	676.4	358	181.11	777.2	414	212.22
478.4	248	120.00	579.2	304	151.11	680.0	360	182.22	780.8	416	213.33
482.0	250	121.11	582.8	306	152.22	683.6	362	183.33	784.4	418	214.44
485.6	252	122.22	586.4	308	153.33	687.2	364	184.44	788.0	420	215.56
489.2	254	123.33	590.0	310	154.44	690.8	366	185.56	791.6	422	216.67
492.8	256	124.44	593.6	312	155.56	694.4	368	186.67	795.2	424	217.78
496.4	258	125.56	597.2	314	156.67	698.0	370	187.78	798.8	426	218.89

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
802.4	428	220.00	903.2	484	251.11	1004.0	540	282.22	1436.0	780	415.56
806.0	430	221.11	906.8	486	252.22	1007.6	542	283.33	1454.0	790	421.11
809.6	432	222.22	910.4	488	253.33	1011.2	544	284.44	1472.0	800	426.67
813.2	434	233.33	914.0	490	254.44	1014.8	546	285.56	1490.0	810	432.22
816.8	436	224.44	917.6	492	255.56	1018.4	548	286.67	1508.0	820	437.78
820.4	438	225.56	921.2	494	256.67	1022.0	550	287.78	1526.0	830	443.33
824.0	440	226.67	924.8	496	257.78	1040.0	560	293.33	1544.0	840	448.89
827.6	442	227.78	928.4	498	258.89	1058.0	570	298.89	1562.0	850	454.44
831.2	444	228.89	932.0	500	260.00	1076.0	580	304.44	1580.0	860	460.00
834.8	446	230.00	935.6	502	261.11	1094.0	590	310.00	1598.0	870	465.56
838.4	448	231.11	939.2	504	262.22	1112.0	600	315.56	1616.0	880	471.11
842.0	450	232.22	942.8	506	263.33	1130.0	610	321.11	1634.0	890	476.67
845.6	452	233.33	946.4	508	264.44	1148.0	620	326.67	1652.0	900	482.22
849.2	454	234.44	950.0	510	265.56	1166.0	630	332.22	1670.0	910	487.78
852.8	456	235.56	953.6	512	266.67	1184.0	640	337.78	1688.0	920	493.33
856.4	458	236.67	957.2	514	267.78	1202.0	650	343.33	1706.0	930	498.89
860.0	460	237.78	960.8	516	268.89	1220.0	660	348.89	1742.0	940	504.44
863.6	462	238.89	964.4	518	270.00	1238.0	670	354.44	1742.0	950	510.00
867.2	464	240.00	968.0	520	271.11	1256.0	680	360.00	1760.0	960	515.56

870.8	466	241.11	971.6	522	272.22	1274.0	690	365.56	1778.0	970	521.11
874.4	468	242.22	975.2	524	273.33	1292.0	700	371.11	1796.0	980	526.67
878.0	470	243.33	978.8	526	274.44	1310.0	710	376.67	1814.0	990	532.22
881.6	472	244.44	982.4	528	275.56	1328.0	720	382.22	1832.0	1000	537.78
885.2	474	245.56	986.0	530	276.67	1346.0	730	387.78	1850.0	1850.0	543.33
888.8	476	246.67	989.6	532	277.78	1364.0	740	393.33	1868.0	1868.0	548.89
892.4	478	247.78	993.2	534	278.89	1382.0	750	398.89	1886.0	1886.0	554.44
896.0	480	248.89	996.8	536	280.00	1400.0	760	404.44	1904.0	1904.0	560.00
899.6	482	250.00	1000.4	538	281.11	1418.0	770	410.00	1922.0	1922.0	565.56

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa									
1940.0	1060	571.11	2444.0	1340	726.67	2948.0	1620	882.22	3452.0	1900	1037.8
1958.0	1070	576.67	2462.0	1350	732.22	2966.0	1630	887.78	3470.0	1910	1043.3
1976.0	1080	582.22	2480.0	1360	737.78	2984.0	1540	893.33	3488.0	1920	1048.9
1994.0	1090	587.78	2498.0	1370	743.33	3002.0	1650	898.89	3506.0	1930	1054.4
2012.0	1100	593.33	2516.0	1380	748.89	3020.0	1660	904.44	3524.0	1940	1060.0
2030.0	1110	598.89	2534.0	1390	754.44	3038.0	1670	910.00	3542.0	1950	1065.6
2048.0	1120	604.44	2552.0	1400	760.00	3056.0	1680	915.56	3560.0	1960	1071.1
2066.0	1130	610.0	2570.0	1410	765.56	3074.0	1690	921.11	3578.0	1970	1076.6
2084.0	1140	615.56	2588.0	1420	771.11	3092.0	1700	926.67	3596.0	1980	1082.2
2102.0	1150	621.11	2606.0	1430	776.67	3110.0	1710	932.22	3614.0	1990	1087.8
2120.0	1160	626.67	2624.0	1440	782.22	3128.0	1720	937.78	3632.0	2000	1093.3
2138.0	1170	632.22	2642.0	1450	787.78	3146.0	1730	943.33	3650.0	2010	1098.9
2156.0	1180	637.78	2660.0	1460	793.33	3164.0	1740	948.89	368.0	2020	1104.4
2174.0	1190	643.33	2678.0	1470	798.89	3182.0	1750	954.44	3686.0	2030	1110.0
2192.0	1200	648.89	2696.0	1480	804.44	3200.0	1760	960.00	3704.0	2040	1115.6
2210.0	1210	654.44	2714.0	1490	810.00	3218.0	1770	965.56	3722.0	2050	1121.1
2228.0	1220	660.00	2732.0	1500	815.56	3236.0	1780	971.11	3740.0	2060	1126.7

2246.0	1230	665.56	2750.0	1510	821.11	3254.0	1790	976.67	3758.0	2070	1132.2
2264.0	1240	671.11	2768.0	1520	826.67	3272.0	1800	982.22	3776.22	2080	1137.8
2282.0	1250	676.67	2786.0	1530	832.22	3290.0	1810	987.78	3794.0	2090	1143.3
2300.0	1260	682.22	2804.0	1540	837.78	3308.0	1820	993.33	3812.0	2100	1148.9
2318.0	1270	687.78	2822.0	1550	843.33	3326.0	1830	998.89	3830.0	2110	1154.4
2336.0	1280	693.33	2840.0	1560	848.89	3344.0	1840	1004.4	3848.0	2120	1160.0
2354.0	1290	698.89	2858.0	1570	854.44	3362.0	1850	1010.0	3866.0	2130	1165.6
2372.0	1300	704.44	2876.0	1580	860.00	3380.0	1860	1015.6	3884.0	2140	1171.1
2390.0	1310	710.00	2894.0	1590	865.56	3398.0	1870	1021.1	3902.0	2150	1176.7
2408.0	1320	715.56	2912.0	1600	871.11	3416.0	1880	1026.7	3920.0	2160	1182.2
2426.0	1330	721.11	2930.0	1610	876.67	3434.0	1890	1032.2	3938.0	2170	1187.8

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa									
3956.0	2180	1193.3	4460.0	2460	1348.9	4964.0	2740	1504.4	5468.0	3020	1660.0
3974.0	2190	1198.9	4478.0	2470	1354.4	4982.0	2750	1510.0	5486.0	3030	1665.6
3992.0	2200	1204.4	4496.0	2480	1360.0	5000.0	2760	1515.6	5504.0	3040	1671.1
4010.0	2210	1210.0	4514.0	2490	1365.6	5018.0	2770	1521.1	5522.0	3050	1676.7
4028.0	2220	1215.6	4532.0	2500	1371.1	5036.0	2780	1526.7	5540.0	3060	1682.2
4046.0	2230	1221.1	4550.0	2510	1376.7	5054.0	2790	1532.2	5558.0	3070	1687.8
4064.0	2240	1226.7	4568.0	2520	1382.2	5072.0	2800	1537.8	5576.0	3080	1693.3
4082.0	2250	1232.2	4586.0	2530	1387.8	5090.0	2810	1543.3	5594.0	3090	1698.9
4100.0	2260	1237.8	4604.0	2540	1393.3	5108.0	2820	1548.9	5612.0	3100	1704.4
4118.0	2270	1243.3	4622.0	2550	1398.9	5126.0	2830	1554.4	5702.0	3150	1732.2
4136.0	2280	1248.9	4640.0	2560	1404.4	5144.0	2840	1560.0	5792.0	3200	1760.0
4154.0	2290	1254.4	4658.0	2570	1410.0	5162.0	2850	1565.6	5882.0	3250	1787.8
4172.0	2300	1260.0	4676.0	2580	1415.6	5180.0	2860	1571.1	5972.0	3300	1815.6
4190.0	2310	1265.6	4694.0	2590	142.1	5198.0	2870	1576.7	6062.0	3350	1843.3
4208.0	2320	1271.1	4712.0	2600	1426.7	5216.0	2880	1582.2	6152.0	3400	1871.1

4226.0	2330	1276.6	4730.0	2610	1432.2	5234.0	2890	1587.8	6242.0	3450	1989.9
4244.0	2340	1282.2	4748.0	2620	1437.8	5252.0	2900	1593.3	6332.0	3500	1926.7
4262.0	2350	1287.8	4766.0	2630	1443.3	5270.0	2910	1598.9	6422.0	3550	1954.4
4280.0	2360	1293.3	4784.0	2640	1448.9	5288.0	292	1604.4	6512.0	3600	1982.2
4298.0	2370	1298.9	4802.0	2650	1454.4	5306.0	2930	1610.0	6602.0	3650	2010.0
4316.0	2380	1304.4	4820.0	2660	1460.0	5324.0	2940	1615.6	6692.0	3700	2037.8
4334.0	2390	1310.0	4838.0	2670	1465.6	5342.0	2950	1621.1	6782.0	3750	2065.6
4352.0	2400	1315.6	4856.0	2680	1471.1	5360.0	2960	1626.7	6872.0	3800	2093.3
4370.0	2410	1321.1	4874.0	2690	1476.7	5378.0	2970	1632.2	6962.0	3850	2121.1
4388.0	2420	1326.7	4892.0	2700	1482.2	5396.0	2980	1637.8	7052.0	3900	2148.9
4406.0	2430	1332.2	4910.0	2710	1487.8	5414.0	2990	1643.3	7142.0	3950	2176.7
4424.0	2440	1337.8	4928.0	2720	1493.3	5432.0	3000	1648.9	7232.0	4000	2204.4
3956.0	2450	1343.3	4946.0	2730	1498.9	5450.0	3010	1654.4	7322.0	4050	2232.2

Temperature Conversion Table

The middle columns of numbers (in boldface type) contain the temperature readings (°F or °C) to be converted. When converting from degrees Fahrenheit to degrees Celsius, read the Celsius equivalent in the column headed "C". When converting from Celsius to Fahrenheit, read the Fahrenheit equivalent in the column headed "F".

ksi		MPa	ksi		MPa	ksi		MPa	ksi		MPa
7412.0	4100	2260.0	8312.0	4600	2537.8	9212.0	5100	2815.6	10112.0	5600	3093.3
7502.0	4150	2287.8	8402.0	4650	2565.6	9302.0	5150	2843.3	10202.0	5650	3121.1
7592.0	4200	2315.6	8492.0	4700	2593.3	9392.0	5200	2871.1	10292.0	5700	3148.9
7682.0	4250	2343.3	8582.0	4750	2621.1	9482.0	5250	2898.9	10382.0	5750	3176.7
7772.0	4300	2371.1	8672.0	4800	2648.9	9572.0	5300	2926.7	10472.0	5800	3204.4
7862.0	4350	2398.9	8762.0	4850	2676.7	9662.0	5350	2954.4	10562.0	5850	3232.2
7952.0	4400	2426.7	8852.0	4900	2704.4	9752.0	5400	2982.2	10652.0	5900	3260.0
8042.0	4450	2454.4	8942.0	4950	2732.2	9842.0	5450	3010.0	10742.0	5950	3287.8
8132.0	4500	2482.2	9032.0	500	2760.0	9932.0	5500	3037.8	10832.0	6000	3315.6
8222.0	4550	2510.0	9122.0	5050	2787.8	10022.0	5550	3065.6			

Hardness Conversions

Approximate relations between Brinell, Rockwell, Shore, Vickers and Firth hardness and the tensile strengths of S.A.E.

carbon and alloy construction steels.

С	Α	15-N	30-N	VICKERS	KNOOP	BRINELL	
150 kg Braie	60 kg Braie	16 kg N Braie	30 kg N Braie	10 kg 136° Diamond	500 Gr. & over	3000 kg 10mm Ball	Approx. Tensile Strength
Rockwell	Rockwell Superficial	Rockwell	Rockwell	Vickers	Knoop	Brinell** (Standard Ball)	ksi
68 67 66 65 64	85.6 85.0 84.5 83.9 83.4	93.2 92.9 92.5 92.2 91.8	84.4 83.6 82.8 81.9 81.1	940 900 865 832 800	920 895 870 846 822	- - - -	inexact and only for steel
63 62 61 60 59	82.8 82.3 81.8 81.2 80.7	91.4 91.1 90.7 90.2 89.8	80.1 79.3 78.4 77.5 76.5	772 746 720 697 674	799 776 754 732 710	- - - 	351
58 57 56 55 54	80.1 79.6 79.0 78.5 78.0	89.3 88.90 88.3 87.9 87.4	75.7 74.8 73.9 73.0 72.0	653 633 613 595 577	690 670 650 630 612	615 595 577 560 543	338 325 313 301 292
53 52 51 50 49	77.4 76.8 76.3 75.9 75.2	86.9 86.4 85.9 85.5 85.0	71.2 70.2 69.4 68.5 676.6	560 544 528 513 498	594 576 558 542 526	525 512 496 481 469	283 273 264 255 246
48 47 46 45 44	74.7 74.1 73.6 73.1 72.5	84.5 83.9 83.5 83.0 82.5	66.7 65.8 64.8 64.0 63.1	484 471 458 446 434	510 495 480 466 452	451 442 432 421 409	238 229 221 215 208
42 40 38 36 34	71.5 70.4 69.4 68.4 67.4	81.5 80.4 79.4 78.3 77.2	61.3 59.5 57.7 55.9 54.2	412 392 372 354 336	426 402 380 360 342	390 371 353 336 319	194 182 171 161 152
32 30 28 26 24 22 20	66.3 65.3 64.3 63.3 62.4 61.5 60.5	76.1 75.0 73.9 72.8 71.6 70.5 69.4	52.1 50.4 48.6 46.8 45.0 43.2 41.5	318 302 286 272 260 248 238	326 311 297 284 272 261 251	301 286 271 258 247 237 226	146 138 131 125 119 115

B 100 kg /16" Ball	F 60 kg 1/16" Ball	30-T 30 kg 1/16" Ball	A 60 kg & Over	Knoop 500 Gr.	Br'L 3000 kg	Tensile Strength
Braie	Braie	Braie	Braie		10 mm Ball	
ockwell	Rockwell	Rockwell Superficial	Rockwell	Knoop	Brinell	Thousand lbs. per sq. in.
100 99 98 97 96	- - - -	83.1 82.5 81.8 81.1 80.4	61.5 60.9 60.2 59.5 58.9	251 246 241 236 231	240 234 228 222 216	116 114 109 104 102
95	-	70.8	58.3	226	210	100
94	-	79.1	57.6	221	205	98
93	-	78.4	57.0	216	200	94
92	-	77.8	56.4	211	195	92
91	-	77.1	55.8	206	190	90
90	-	76.4	55.2	201	185	89
89	-	75.8	54.6	196	180	88
88	-	75.1	54.0	192	176	86
87	-	74.4	53.4	188	172	84
86	-	73.8	52.8	184	169	83
85	-	73.1	52.3	180	165	82
84	-	72.4	51.7	176	162	81
83	-	71.8	51.1	173	159	80
82	-	71.1	50.6	170	156	77
81	-	70.4	50.0	167	153	73
80	-	69.7	49.5	164	150	72
79	-	69.1	48.9	161	147	70
78	-	68.4	48.4	158	144	69
77	-	67.7	47.9	155	141	68
76	-	67.1	47.3	152	139	67
75	99.6	66.4	46.8	150	137	66
74	99.1	65.7	46.3	147	135	65
72	98.0	64.4	45.3	143	130	63
71	96.8	63.1	44.3	139	125	61
68	95.6	61.7	43.3	135	121	59

en-(•) (=metals

Hardness Conversions (Continued)								
B 100 kg 1/16" Ball	F 60 kg 1/16" Ball	30-T 30 kg 1/16" Ball	A 60 kg & Over	Knoop 500 Gr.	Br'L 3000 kg	Tensile Strength		
Braie	Braie	Braie	Braie		10 mm Ball			
Rockwell	Rockwell	Rockwell Superficial	Rockwell	Knoop	Brinell	Thousand lbs. per sq. in.	mm ball.	
66 64 62 60 58	94.5 93.4 92.2 91.1 90.0	60.4 59.0 57.7 56.4 55.0	42.3 41.4 40.4 39.5 38.6	131 127 124 120 117	117 114 110 107 104	Even for steel, tensile strength relation to hardness is inexact unless determined for specific material. See ASTM A370	* Below Brinell 101 tests were made with only 500 kg lodad and 10 mm ball.	
56 54 52 50 48	88.8 87.7 86.5 85.4 84.3	53.7 52.4 51.0 49.7 48.3	37.7 36.8 35.9 35.0 34.1	114 111 109 107 105	101 *87 *85 *83 *81			
46 44 42 40 38	83.1 82.0 80.8 79.7 78.6	47.0 45.7 44.3 43.0 41.6	33.3 32.4 31.6 30.7 29.9	103 101 99 97 95	*79 *78 *76 *74 *73			
36 34 32 30	77.4 76.3 75.2 74.0	40.3 39.0 37.6 36.3	29.1 28.2 27.4 26.6	93 91 89 87	*71 *70 *68 *67		* Below Brinell 1 ** Above Brinell	

Glossary of Terms

ACID STEEL

Steel melted in a furnace that has an acid bottom and lining and under a slag that is dominantly siliceous.

AGE HARDENING

A process of aging that increases hardness and strength and ordinarily decreases ductility. Age hardening usually follows rapid cooling or cold working.

AGING

Change in a metal by which its structure recovers from an unstable condition produced by quenching or by cold working such as cold reduction. The change in structure is marked by changes in physical properties. Aging which takes place slowly at room temperature may be accelerated by slight increase in temperature. See "strain aging".

AIR HARDENING STEEL

An alloy steel that is hardened by cooling in air from a temperature higher than the transformation range; also called self hardening steel.

ALLOY

A substance that has metallic properties and is composed of two or more chemical elements of which at least one is a metal.

ALLOYING ELEMENT

Chemical elements constituting an alloy; in steels, usually limited to the metallic elements added to modify the properties of steel.

ALLOY STEEL

Steel containing significant quantities of alloying elements (other than carbon and the commonly accepted amounts of manganese, silicon, sulfur and phosphorus) added to effect changes in the mechanical or physical properties.

ANNEALING

A process involving heating and cooling, usually applied to induce softening. The term also refers to treatments intended to alter mechanical or physical properties, produce a definite microstructure. or remove gases. When applicable, the following more specific terms should be used: black annealing, blue annealing, box annealing, bright annealing, full annealing, graphitizing, isothermal annealing, malleablizing, process annealing, spheroidizing, stabilizing annealing.

Definitions of some of these are given in their alphabetical positions in this glossary. When applied to ferrous alloys, the term "annealing", without qualifications, implies full annealing. Any process of annealing will usually reduce stresses, but if the treatment is applied for the sole purpose of such relief, it should be designated as "stress relieving".

ARTIFICIAL AGING

An aging treatment above room temperature.

AUSTEMPERING

A trade name for a patented heat treating process that consists in quenching a ferrous alloy from a temperature above the transformation range, in a medium having a rate of heat abstraction sufficiently high to prevent the formation of high-temperature transformation products; and in maintaining the alloy, until transformation is complete, at a temperature below that of pearlite formation and above that of martensite formation.

AUSTENITE

A solid solution in which gamma iron is the solvent; characterized by a face-centered cubic crystal structure.

AUSTENITIC STAINLESS STEEL

Steel having the microstructure substantially wholly austenitic at normal temperature: usually a steel of the chromium nickel type.

AUSTENITIZING

This is the process of forming austenite by heating ferrous alloy into the transformation range (partial austenitizing) or above the transformation range (complete austenitizing).

BALL MILL

A mill in which material is finely ground by rotation in a steel drum along with pebbles or steel balls. The grinding action is provided by the collision of the balls with one another and with the shell of the mill.

BANDED STRUCTURE

A segregated structure of nearly parallel bands aligned in the direction of working.

BASIC OXYGEN PROCESS

The family of named steelmaking processes in which certain oxidizable constituents in the charge serve as fuel for the melting and refining of the charge. High purity oxygen is injected through a lance against a charge and reacts to physically stir the bath and burn to oxidize the carbon, silicon, manganese, and even iron contents to predictable levels, thus creating the heat and refining the steel. Liquid fuels or fluxes may be injected along with the oxygen.

BASIC STEEL

Steel melted in a furnace that has a basic bottom and lining, and under a slag that is dominantly basic.

BAND TESTS

Various tests used to determine the ductility of sheet or plate that is subjected to bending. These tests may include determination of the minimum radius or diameter required to make satisfactory bend and the number of repeated bends that the material can withstand without failure when it is bent through a given angle and over a definite radius.

BESSEMER PROCESS

A process for making steel by blowing air through molten pig iron contained in a suitable vessel, and thus causing rapid oxidation mainly of silicon and carbon.

BILLET

See bloom.

en-(•) (=metals

BLANKING

Shearing out a piece of sheet metal in preparation for deep drawing.

BLAST FURNACE

A shaft furnace in which solid fuel is burned with an air blast to smelt ore in a continuous operation. Where the temperature must be high, as in the production of pig iron, the air is preheated. Where the temperature can be lower, as in smelting copper, lead and tin ores, a smaller furnace is economical, and preheating of the blast is not required.

BLISTER

A raised spot on the surface of metal, caused by expansion of gas in a subsurface zone during heat treatment; Very fine blisters are called "pinhead" or "pepper blisters". BLOOM (slab, billet). Semi-finished products hot rolled from ingots and rectangular in cross section, with rounded corners. The chief differences are in cross-sectional area, in ratio of width to thickness, and in the intended uses. The American Iron and Steel Products Manual Section 2 (1943) classify general usage thus:

Thickness Cross-Sectional

Туре	Width, inches	inches	Area, sq. inches	
Bloom	Width equals thickn	Width equals thickness*		
Billet	1 1/2 (min)	1 1/2 (min)	21/4 to 36	
Slab	2 x thickness (min)	2 x thickness (min) 11/2 (min)		

^{*} Generally

Blooms, slabs and billets of rerolling quality are intended for hot rolling into common products such as shapes, plates, strip, bars, wire rod, sheet and black plate. Blooms, slabs and billets of forging quality are intended for conversion into forgings or other products to be heat treated.

BLOWHOLE

A hole produced in a casting when gas, entrapped while the mould is being filled, or evolved during the solidification of metal, fails to escape and is held in pockets.

BLUE ANNEALING

A process of softening ferrous alloys in the form of hot rolled sheet, by heating in the open furnace to a temperature within the transformation range and then cooling in air. The formation of a bluish oxide on the surface is incidental.

BLUE BRITTLENESS

Reduced ductility occurring as a result of strain aging, when certain ferrous alloys are worked between 300 and 700°F. This phenomenon may be observed at the working temperature or subsequently at lower temperatures.

BOX ANNEALING

A process of annealing a ferrous alloy in a suitable closed metal container, with or without packing material, in order to minimize oxidation. The charge is usually heated slowly to a temperature below the transformation range, but sometimes above, or within it, and is then cooled slowly. This process is also called "close annealing" or "pot annealing".

BRAKE

A piece of equipment used for bending sheet; also called a "bar folder". If operated manually, it is called a "hand-brake"; if power driven, it is called a "press-brake".

BRAZING

Joining metals by fusion or nonferrous alloys that have melting points above 800°F but lower than those of the metals being joined. This may be accomplished by means of a torch (torch brazing), in a furnace (furnace brazing) or by dipping in a molten flux bath (dip or flux brazing). The filler metal is ordinarily in rod form in torch brazing; whereas in furnace and dip brazing the work material is first assembled and the filler metal may then be applied as wire, washers, clips, bands, or may be integrally bonded, as in brazing sheet.

BRIGHT ANNEALING

A process of annealing usually carried out in a controlled furnace atmosphere so that surface oxidation is reduced to a minimum and the surface remains relatively bright.

BRINELL HARDNESS TEST

A test for determining the hardness of a material by forcing a hard steel or carbide ball of specified diameter into it under a specified load. The result is expressed as the Brinell hardness number, which is the value obtained by dividing the applied load in kilograms by the surface area of the resulting impression in square millimeters.

BRITTLE CRACK PROPAGATION

A very sudden propagation of a crack with the absorption of no energy except that stored elastically in the body. Microscopic examination may reveal some deformation even though it is not noticeable to the unaided eye.

BRITTLE FRACTURE

Fracture with little or no plastic deformation.

BRITTLENESS

A tendency to fracture without appreciable deformation.

BROACHING

Multiple shaving, accomplished by pushing a tool with stepped cutting edges along the work, particularly through holes.

BURNT

A term applied to a metal permanently damaged by having been heated to a temperature close to the melting point.

CAMBER

Curvature in the plane of rolled sheet or strip, or in the plane of the web of structural shapes.

CAPPED STEEL

Semi-killed steel cast in a bottle-top mold and covered with a cap fitting into the neck of the mold. The cap causes the top metal to solidify. Pressure is built up on the sealed-in molten metal and results in a surface condition much like that of rimmed steel.

CARBIDE

A compound of carbon with one or more metallic elements.

CARBON STEEL

Steel that owes its properties chiefly to the presence of carbon, without substantial amounts of other alloying elements; also termed "ordinary steel", straight carbon steel", plain carbon steel".

CARBURIZING

A process that introduces carbon into a solid ferrous alloy by heating the metal in contact with a carbonaceous material solid, liquid or gas-to a temperature above the transformation range and holding at that temperature. Carburizing is generally followed by quenching to produce a hardened case.

CASE

In a ferrous alloy, the surface layer that has been made substantially harder than the interior or core by a process of case hardening.

CASE HARDENING

A process of hardening a ferrous alloy so that the surface layer or case is made substantially harder than the interior or core. Typical case-hardening processes are carburizing and quenching, cyaniding, carbonitriding, nitriding, induction hardening and flame hardening.

CAST IRON

An iron containing carbon in excess of the solubility in the austenite that exists in the alloy at the eutectic temperature.

CAST STEEL

Any object made by pouring molten steel into moulds.

CAST STRUCTURE

The structure, on a macroscopic or microscopic scale, of a cast alloy that consists of cord dendrites and, in some alloys, a network of other constituents.

CATHODIC PROTECTION

The use of a particular metal as cathode in the corrosion cell as a means of protecting that metal against electro-chemical corrosion. This may be accomplished by the attachment of a more anodic metal or by the use of an applied potential.

CEMENTITE

A compound of iron and carbon known as "iron carbide" which has the approximate chemical formula Fe3C and is characterized by an orthorhombic crystal structure.

CHARGE

(1) The liquid and solid materials fed into a furnace for its operation. (2) Weights of various liquid and solid materials put into a furnace during one feeding cycle.

CHARPY TEST

A pendulum type single-blow impact test in which the specimen, usually notched, is supported at both ends as a simple beam and broken by a falling pendulum. The energy absorbed, as determined by the subsequent rise of the pendulum, is a measure of impact strength or notch toughness.

CHECK ANALYSIS

Chemical analysis made of drillings taken from semi-finished or finished products. The units are subject to certain specified variations from the ladle analysis.

CHIPPING

A method for removing seams and other surface defects with chisel or gouge so that such defects will not be worked into the finished product. Chipping is often employed to remove metal that is excessive but not defective. Removal of defects by gas cutting is known as "deseaming" or "scarfing".

CLINK

Internal crack, usually resulting from improper heating of cold steel.

CLUSTER MILL

A rolling mill where each of the two working rolls of small diameter is supported by two or more backup rolls.

COERCIVE FORCE

The magnetizing force that must be applied in the direction opposite to that of the previous magnetizing force in order to remove residual magnetism; thus, an indicator of the "strength" of magnetically hard materials.

COIL BREAK

Sharp bend in the surface of coiled strip, leaving a distinct mark after flattening. See "fluting".

COLD DRAWING

Method of cold working applied to bars, involving pulling of the bar through dies of smaller aperture than the original bar size.

COLD SHORT

The characteristic of metals that are brittle at ordinary or low temperatures.

COLD SHUT

(1) A discontinuity that appears on the surface of cast metal as a result of two streams of liquid meeting and failing to unite. Pouring the metal when it is too cold may cause such a discontinuity. (2) On a forging, a portion of the surface that is separated by oxide from the main body of metal.

COLD WORK

Plastic deformation at such temperatures and rates that substantial increases occur in the strength and hardness of the metal. Visible structural changes include changes in grain shape and, in some twinning or banding.

COLD WORKING

Deforming a metal plastically at such a temperature and rate that strain hardening occurs. The upper limit of temperature for this process is the recrystallization temperature.

COLUMNAR STRUCTURE

A coarse structure of parallel columns of grains, which is caused by highly directional solidification resulting from sharp thermal gradients.

COMBINED CARBON

The carbon that is combined with iron or alloying elements to form carbide in cast iron or steel.

COMPRESSIVE STRENGTH

Yield-The maximum stress that a metal, subjected to compression, can withstand without a predefined amount of deformation. Ultimate-the maximum stress that a brittle material can withstand without fracture when subjected to compression.

CONTINUOUS CASTING

A casting technique in which an ingot, billet, tube or other shape is continuously solidified while it is being poured, so that its length is not determined by mould dimensions.

CONTINUOUS MILL

A rolling mill consisting of a number of stands of synchronized rolls (in tandem) in which metal undergoes successive reductions as it passes through the various stands.

CONTROLLED COOLING

A process of cooling from an elevated temperature in a predetermined manner, to avoid hardening, cracking or internal damage, or to produce a desired microstructure. This cooling usually follows the final hot forming operation.

COOLING STRESSES

Stresses developed by uneven contraction or external constraint of metal during cooling; also those stresses resulting from localized plastic deformation during cooling, and retained.

CORE

In a ferrous alloy, the interior portion that is substantially softer than the surface layer or case, after case hardening.

CORE LOSS

The total of hysteresis and eddy current loss measured on standard laminations of electrical steel.

CORE PLATING

Insulating varnish or surface applied to electrical steels, to improve interlamination resistance and to aid punching properties.

CORROSION

Gradual chemical or electrochemical attack on a metal by atmosphere, moisture, or other agents.

CREEP

The flow or plastic deformation of metals held for long periods of time at stresses lower than the normal yield strength. The effect is particularly important if the temperature of stressing is in the vicinity of the recrystallization temperature of the metal.

CREEP LIMIT

- (1) The maximum stress that will cause less than a specified quantity of creep in a given time.
- (2) The maximum nominal stress under which the creep strain rate decreased continuously with time under constant load and at constant temperature. Sometimes used synonymously with creep strength.

CREEP STRENGTH

(1) The constant nominal stress that will cause a specified quantity of creep in a given time at constant temperature. (2) The constant nominal stress that will cause a specified creep rate at constant temperature.

CRITICAL COOLING RATE

The minimum rate of continuous cooling just sufficient to prevent undesired transformations. For steel, the slowest rate at which it can be cooled from above the upper critical temperature to prevent the decomposition of austenite at any temperature above the temperature at which the transformation of austenite to martensite starts during cooling.

CRITICAL POINT

Transformation temperature is the term preferred.

CRITICAL RANGE OR CRITICAL TEMPERATURE RANGE

Synonymous with transformation range, which is preferred.

CRITICAL STRAIN

The percentages strain at which, or immediately higher than which, large grain growth occurs during heating.

CRITICAL TEMPERATURE

Transformation temperature is the term preferred.

CROP

The end or ends of an ingot that contain the pipe or other defects to be cut off and discarded; also termed "crop end" and "discard".

CROSS-COUNTRY MILL

A rolling mill in which the mill stands are so arranged that their tables are parallel with a transfer (or cross-over) table connecting them. They are used for rolling structural shapes, rails and any special form of bar stock not rolled in the ordinary bar mill.

CROSS ROLLING

The rolling of sheet so that the direction of rolling is changed about 90° from the direction of the previous rolling.

CROWN

In the center of metal sheet or strip, thickness, greater than at the edge.

CRYSTAL

A physically homogeneous solid in which the atoms, ions or molecules are arranged in a threedimensional repetitive pattern

CRYSTALLIZATION

The formation of crystals by the atoms assuming definite positions in a crystal lattice. This is what happens when a liquid metal solidifies. (Fatigue, the failure of metals under repeated stresses, is sometimes falsely attributed to crystallization).

CUP FRACTURE (CUP AND CONE FRACTURE)

Fracture, frequently seen in tensile test pieces of a ductile material, in which the surface of failure on one portion shows a central flat area of failure in tension, with an exterior extended rim of failure in shear.

DECARBURIZATION

The loss of carbon from the surface of a ferrous alloy as a result of heating in a medium that reacts with the carbon.

DEEP DRAWING

Forming cup-shaped particles or shells by using a punch to force sheet metal into a die.

DEEP ETCHING

Macro-etching; etching, for examination at a low magnification, in a reagent that attacks the metal to much greater extent than normal for microscopic examination. Gross features may be developed abnormal grain size, segregation, cracks or grain flow.

DEFECT

Internal or external flaw or blemish. Harmful defects can render material unsuitable for specific end use.

DEOXIDATION

Elimination of oxygen in liquid steel, usually by introduction of aluminum or silicon or other suitable element. This term is also used to denote reduction of surface scale (iron oxide)

DESEAMING

See chipping.

DIRECTIONAL PROPERTIES

Anisotropic condition where physical and mechanical properties vary, depending on the relation of the test axis to a specific direction of the metal; a result of preferred orientation or of fibering of inclusions during the working.

DIRECT QUENCHING

A process of quenching carburized parts directly from the carburizing operation.

DISCARD

See crop.

DRAWING

See tempering.

DRAWING QUALITY STEEL

Usually plate, sheet or strip of suitable temper for making various shapes involving severe stretching of the material.

DROP FORGING

Forming metal, usually under impact, by compression within dies designed to produce the required shape. The term is ordinarily used synonymously with hot die forging.

en-(•) (=metals

DROP HAMMER

A forging machine that employs the impact resulting from the action of gravity, with or without added steam or air pressure, on a falling ram.

DUCTILITY

The property that permits permanent deformation before fracture by stress in tension.

DIAMOND PYRAMID HARDNESS TEST

An indentation hardness test employing a 136° diamond pyramid indenter and variable loads enabling the use of one hardness scale for all ranges of hardness from very soft lead to tungsten carbide.

DIRECT CHILL (DC) CASTING

A continuous method of making ingots or billets for sheet or extrusion by pouring the metal into a short mould. The base of the mould is a platform that is gradually lowered while the metal solidifies, the frozen shell of metal acting as a retainer for the liquid cooled by the impingement of water directly on the mould or on the walls of the solid metal as it is lowered. The length of the ingot is limited by the depth to which the platform can be lowered: therefore, it is often called semi-continuous casting.

EAR

A wavy projection formed in the course of deep drawing, as a result of directional properties or anisotropy of the sheet.

ELASTIC LIMIT

The maximum stress that a material will withstand without permanent deformation. (Almost never determined experimentally; yield strength is customarily determined).

ELECTRIC FURNACE

A melting furnace with a shallow hearth and a low roof in which the charge is melted and refined by an electric arc between one or more electrodes and the charged material. The electrodes normally are suspended through the roof. No liquid or gaseous fuel is usually used; however, gaseous oxygen may be injected into the bath.

ELONGATION

The amount of permanent extension in the vicinity of the fracture in the tension test; usually expressed as a percentage of the original gauge length, as 25% in 2 in. Elongation may also refer to the amount of extension at any stage in any process that elongates a body continuously, as in rolling.

EMBOSSING

Raising a design in relief against a surface.

EMBRITTLEMENT

Reduction in the normal ductility of a metal due to a physical or chemical change.

ENDURANCE LIMIT

The maximum stress that a metal will withstand without failure during a specified large number of cycles of stress. If the term is employed without qualification, the cycles of stress are usually such as to produce complete reversal of flexural stress.

en-(•) (=metals

END USE

Specific detailed part to be made. End use is described by aspecific phrase like "steel stiffener for back plate of model A refrigerator". End uses are not indicated by wide general terms such as "for refrigerators" or "for shipbuilding".

EOUILIBRIUM

A dynamic condition of balance between atomic movements, where the resultant is zero and the condition appears to be one of rest rather than change.

ERICHSEN TEST

A cupping test in which a piece of sheet metal, restrained except at the centre, is deformed by a cone-shaped spherical-end plunger until fracture occurs. The height of the cup in millimeters at fracture is a measure of the ductility.

EXTENSOMETER

Device, usually mechanical, for indicating the deformation of metal while it is subjected to stress.

EXTRUSION

Conversion of a billet into lengths of uniform cross-section by forcing the plastic metal through a die orifice of the desired cross-sectional outline. In "direct extrusion", the die and ram are at opposite ends of the billet, and the product and ram travel in the same direction. In "indirect extrusion" (rare), the die is at the ram end of the billet and the product travels through and in the opposite direction to the hollow ram. A "stepped extrusion" is a single product with one or more abrupt cross-section changes and is obtained by interrupting the extrusion by die changes. "Impact extrusion" (cold extrusion) is the process or resultant product of a punch striking an unheated slug in a confining die. The metal flow may be either between the punch and die or through another opening. "Hot extrusion" is similar to cold extrusion except that a preheated slug is used and the pressure application is slower.

FATIGUE

The tendency for a metal to break under conditions of repeated cyclic stressing considerably below the ultimate tensile strength.

FATIGUE CRACK OF FAILURE

A fracture starting from a nucleus where there is an abnormal concentration of cyclic stress and propagating through the metal. The surface is smooth and frequently shows concentric (sea shell) markings with a nucleus as a center.

FATIGUE LIFE

The number of cycles of stress than can be sustained prior to failure for a stated test condition.

FATIGUE LIMIT

The maximum stress that a metal will withstand without failure for a specified large number of cycles of stress. Usually synonymous with endurance limit.

FATIGUE RATIO

The ratio of the fatigue limit for cycles of reversed flexural stress to the tensile strength.

FATIGUE STRENGTH

The maximum stress that can be sustained for a specified number of cycles without failure, the stress being completely reversed within each cycle unless otherwise stated.

FERRITE

A solid solution in which alpha iron is the solvent, and which is characterized by a body-centered cubic crystal structure.

FERRITIC STAINLESS STEEL

Steel having the microstructure substantially wholly ferritic at normal temperature: usually a steel of the chromium type.

FERRO-ALLOY

An alloy or iron that contains a sufficient amount of one or more chemical elements-such as manganese, chromium, or siliconto be useful as an agent for introducing these elements into steel by ad-mixture with molten steel.

FILLET

A concave junction of two (usually perpendicular) surfaces.

FINISHED STEEL

Steel that is ready for the market without further work or treatment. Blooms, billets, slabs, sheet bars, and wire rods are termed "semi-finished".

FINISHED TEMPERATURE

The temperature at which hot mechanical working of metal is completed.

FISHTAIL

An overlapping at the back end of rolled sheet or bar.

FLAKES

Internal fissures in ferrous metals. In a fractured surface these fissures may appear as sizable areas of silvery brightness and coarse texture; in wrought products such fissures may appear as short discontinuities on an etched section. Also called "shatter cracks", "chrome cracks", "fish eyes" and "snowflakes".

FLAME HARDENING

A process of hardening a ferrous alloy by heating it above the transformation range by means of a high-temperature flame, and then cooling as required.

FI ANGE

(1) A projection of metal on formed objects. (2) The parts of a channel at right angles to the central section or web.

FLASH

A thin fin of metal formed at the sides of a forging or weld when a small portion of metal is forced out between the edges of the forging or welding dies.

FLATNESS

Relative term for the measure of deviation of flat rolled material from a plane surface: usually determined as the height of ripples of waves above a horizontal level surface.

FLUTING

Kinking or breaking caused by the curving of metal strip on a radius so small, in relation to the thickness, as to stretch the outer surface well beyond its elastic limit.

FRACTURE TEST

Breaking a piece of metal for the purpose of examining the fractured surface to determine the structure or carbon content of the metal or to detect the presence of internal defects.

FULL ANNEALING

A softening process in which a ferrous alloy is heated to a temperature above the transformation range and, after being held for a sufficient time at this temperature, is cooled slowly to a temperature below the transformation range. The alloy is ordinarily allowed to cool slowly in the furnace, although it may be removed and cooled in some medium that ensures a slow rate of cooling.

GRAIN GROWTH

An increase in the grain size of metal.

GRAIN REFINER

Any material added to a liquid metal for the purpose of producing a finer grain size in the subsequent casting, or of retaining fine grains during the heat treatment of wrought structures.

GRAINS

Individual crystals in metals.

GRAPHITIZING

A heating and cooling process by which the combined carbon in cast iron or steel is transformed. Wholly or partly, to graphitic or free carbon.

HARDENABILITY

In a ferrous alloy, the property that determines the depth and distribution of hardness induced by quenching.

HARDENING

Any process for increasing the hardness of metal by suitable treatment, usually involving heating and cooling.

HARDNESS

Defined in terms of the method of measurement. (1) Usually the resistance to indentation. (2) Stiffness or temper of wrought products. (3) Machinability characteristics.

HARDNESS TESTS

(A) Brinell Hardness - A hardness test performed on a Brinell hardness testing machine. The smooth surface of a specimen is indented with a spherical-shaped hardened steel ball of known diameter by means of a predetermined load applied to the ball. The diameter of the impression is measured in millimeters with a micrometer microscope, and the reading is compared with a chart to determine the Brinell Hardness number (BHn).

- **(B) Rockwell Hardness -** A hardness test performed on a Rockwell hardness testing machine. Hardness is determined by a dial reading which indicates the depth of penetration of a steel ball or diamond cone when a load is applied.
- **(C)** Scleroscope or Shore Hardness A hardness test performed on a Shore Scleroscope Hardness Tester. The hardness is determined by the rebound of a diamond pointed hammer (or tup) when it strikes the surface of a specimen. The hammer (or tup) is enclosed in a glass tube and the height of the rebound is read either against a graduated scale inscribed on the tube, or on a dial, depending on the model instrument used.

HEARTH

The bottom portion of certain furnaces, such as the blast furnace, air furnace and other reverberatory furnaces, in which the molten metal is collected or held.

HEAT TREATMENT

A combination of heating and cooling operations, timed and applied to a metal or alloy in the solid state in a way that will produce desired properties. Heating for the sole purpose of hot working is excluded from the meaning of this definition.

HOLD DOWN

The tool that exerts pressure normal to a sheet blank during deep drawing, in order to prevent wrinkling.

HOMOGENOUS

Usually defined as having identical characteristics throughout. However, physical homogeneity may require only an identity of lattice type throughout, while chemical homogeneity requires uniform distribution of alloying elements.

HOMOGENIZING

A process of heat treatment at high temperature intended to eliminate or decrease chemical segregation by diffusion.

HOT FORMING

Working operations, such as bending and drawing sheet and plate, forging, pressing, and heading, performed on metal heated to temperatures above room temperature.

HOT SHORTNESS.

Brittleness in hot metal.

HOT TOP

See sinkhead.

HOT OUENCHING

A process of quenching in a medium at a temperature substantially higher than atmospheric temperature.

HOT WORKING

Plastic deformation of metal at such a temperature and rate that strain hardening does not occur. The lower limit of temperature for this process is the recrystallization temperature.

HYDROGEN EMBRITTLEMENT

IMPACT ENERGY (IMPACT VALUE)

The amount of energy required to fracture a material, usually measured by means of an Izod or Charpy test. The type of specimen and testing conditions affect the values and therefore should be specified.

IMPACT TEST

A test to determine the energy absorbed in fracturing a test bar at high velocity. The test may be in tension or in bending, or it may properly be a notch test if a notch is present, creating multiaxial stresses.

INCIDENTAL ELEMENTS

Small quantities of non-specified elements commonly introduced into product from the use of scrap metal with the raw materials.

INCLUSIONS

Particles of impurities (usually oxides, sulfides, silicates and such) that are held mechanically, or are formed during solidification or by subsequent reaction within the solid metal.

INDUCTION HARDENING

A process of hardening a ferrous alloy by heating it above the transformation range by means of electrical induction, and cooling as required.

INGOT

A casting intended for subsequent rolling or forging.

INTERGRANULAR CORROSION

A type of electrochemical corrosion that progresses preferentially along the grain boundaries of an alloy, usually because the grain boundary regions contain material anodic to the central regions of the grains.

IRON

(1) Element No. 26 of the periodic system, the average atomic weight of the naturally occurring isotopes being 55.85 (2) Ironbase materials not falling into the steel classification.

ISOTHERMAL ANNEALING

A process in which a ferrous alloy is heated to produce a structure partly or wholly austenitic, and is then cooled to and held at a temperature that causes transformation of the austenite to a relatively soft ferrite-carbide aggregate.

ISOTHERMAL TRANSFORMATION

The process of transforming austenite in a ferrous alloy to ferrite or a ferrite-carbide aggregate at any constant temperature within the transformation range.

IZOD TEST

A pendulum type of single-blow impact test in which the specimen, usually notched, is fixed at one end and broken by a falling pendulum. The energy absorbed, as measured by the subsequent rise of the pendulum, is a measure of impact strength or notch toughness.

KALDO PROCESS

One of the family of basic oxygen steelmaking processes which uses an inclined, rotating cylindrical furnace in which oxygen is injected through a lance in the centre line of the furnace. This furnace uses a basic refractory lining and normally no fuels or fluxes are injected with the oxygen.

KILLED STEEL

Steel deoxidized with a strong deoxidizing agent such as silicon or aluminum in order to reduce the oxygen content to a minimum so that no reaction occurs between carbon and oxygen during solidification.

LADLE ANALYSIS

Chemical analysis made from samples obtained during original casting of ingots. This is normally to controlling analysis for satisfying the specifications.

LAMINATIONS

Defects resulting from the presence of blisters, seams or foreign inclusions aligned parallel to the worked surface of a metal.

LAP

A surface defect appearing as a seam, caused by folding over hot metal, fins or sharp corners and then rolling or forging them into the surface, but not welding them.

L-D PROCESS

One of the basic oxygen steelmaking processes using a vertical cylindrical furnace in which oxygen is injected from above by a lance. The furnace has a basic refractory lining. Some variations of this process include the injection of liquid or gaseous fuels and fluxes along with the gaseous oxygen.

LEVELLING

Flattening rolled metal sheet. See roller flattening.

LONGITUDINAL DIRECTION

The direction in a wrought metal product parallel to the direction of working (drawing, extruding, rolling).

LÜDER'S LINES OR LÜDER LINES

(stretcher strains, flow figures) Elongated markings that appear on the surface of some materials, particularly iron and low carbon steel, when deformed just past the yield point. These markings lie approximately parallel to the direction of maximum shear stress and are the result of localized yielding. They consist of depressions when produced in tension and of elevations when produced in compression. They may be made evident by localized roughening of a polished surface or by localized flaking from an oxidized surface.

MACROSCOPIC

Visible either with the naked eye or under low magnification (as great as about 10 diameters).

MACROSTRUCTURE

The structure of metals as revealed by macroscopic examination.

MALLEABILITY

The property that determines the ease of deforming a metal when the metal is subjected to rolling or hammering. The more malleable metals can be hammered or rolled into thin sheet more easily than others.

MALLEABILIZING

A process of annealing white cast iron in such a way that the combined carbon is wholly or partly transformed to graphite or free carbon or, in some instances, part of the carbon is removed completely.

MANNESMANN PROCESS

A process used for piercing tube billets in making seamless tubing. The billet is rotated between two heavy rolls mounted at an angle, and is forced over a fixed mandrel. Billets are called "tube rounds".

MARTEMPERING

The process of quenching an austenitized ferrous alloy in a medium at a temperature in the upper portion of the temperature range of martensite formation, or slightly above that range, and holding in the medium until the temperature throughout the alloy is substantially uniform. The alloy is then allowed to cook in air through the temperature range of martensite formation.

MARTENSITE

An unstable constituent in quenched steel, formed without diffusion and only during cooling below a certain temperature known as the Ms (or Ar") temperature. The structure is characterized by its acicular appearance on the surface of a polished and etched specimen. Martensite is the hardest of the transformation products of austenite. Tetragonality of the crystal structure is observed when the carbon content is greater than about 0.05%.

MARTENSITIC STAINLESS STEEL

Steel having the microstructure substantially wholly martensitic at normal temperature: usually a steel of medium carbon high alloy type.

MECHANICAL PROPERTIES

Those properties of a material that reveal the elastic and inelastic reaction when force is applied, or that involve the relationship between stress and strain; for example, the modulus of elasticity, tensile strength and fatigue limit. These properties have often been designated as "physical properties", but the term "mechanical properties" is preferred.

MECHANICAL WORKING

Subjecting metal to pressure exerted by rolls, dies, presses, or hammers, to change its form or to affect the structure and consequently the mechanical and physical properties.

MERCHANT MILL

A mill, consisting of a group of stands of three rolls each arranged in a straight line and driven by one power unit, used to roll rounds, squares or flats of smaller dimensions that would be rolled on the bar mill.

METALLOGRAPHY

The science concerning the constitution and structure of metals and alloys as revealed by the microscope.

MICROSTRUCTURE

The structure of polished and etched metal and alloy specimens as revealed by the microscope.

MODULUS OF ELASTICITY

The slope of the elastic portion of the stress-strain curve in mechanical testing. The stress is divided by the unit elongation. The tensile of compressive elastic modulus is called "Young's modulus"; the torsional elastic modulus is known as the "shear modulus", or "modulus of rigidity".

NITIRIDING

A process of case hardening in which a ferrous alloy, usually of special composition, is heated in an atmosphere of ammonia or in contact with nitrogenous material to produce surface hardening by the absorption of nitrogen, without quenching.

NON-SCALLOPING QUALITY

Steel specially made to be substantially free from scallops or ears during pressing and drawing.

NORMALIZING

A process in which a ferrous alloy is heated to a suitable temperature above the transformation range and is subsequently cooled in still air at room temperature.

NORMAL SEGREGATION

Concentration of alloying constituents that have low melting points, in those portions of a casting that solidfy last.

NOTCH BRITTLENESS

Susceptibility of a material to brittleness in areas containing a groove, scratch, sharp fillet or notch.

NOTCH SENSITIVITY

The reduction caused in nominal strength, impact or static, by the presence of a stress concentration, usually expressed as the ratio of the notched to the unnotched strength.

OPEN HEARTH FURNACE

A furnace for melting metal, in which the bath is heated by the convection of hot gases over the surface of the metal and by radiation from the roof.

ORANGE PEEL EFFECT

A surface roughening encountered in forming products from metal stock that has a coarse grain size, also referred to as "pebbles" and "alligator skin".

ORIENTATION

The angular relationship between the axis of a crystal and an external reference system. The orientation of individual crystals is most conveniently represented by poles of simple planes plotted stereo-graphically.

OUT-OF-ROUND

Deviation of cross section of a round bar from a true circle: normally measured as difference between maximum and minimum diameters at the same cross section of the bar.

OUT-OF-SQUARE

For square bars this is the deviation of cross section from a true square; normally measured as the difference between the two diagonal dimensions at one cross section. For structural shapes, the term out-of-square indicates the deviation from a right angle of the plane of flanges in relation to the plane of webs.

OVERHEATED

A term applied when, after exposure to an excessively high temperature, a metal develops an undesirably coarse grain structure but is not permanently damaged. Unlike a burnt structure, the structure produced by overheating can be corrected by suitable heat treatment, by mechanical work, or by a combination of the two.

PEARLITE

The lamellar aggregate of ferrite and carbide. **Note:** It is recommended that this word be reserved for the microstructures consisting of thin plate or lamellae-that is, those that may have a pearly luster in white light. The lamellae can be very thin and resolvable only with the best microscopic equipment and technique.

PERMEABILITY

(1) Magnetic permeability, the ratio of the magnetic induction to the intensity of the magnetizing field. (2) In a mould, the porosity of foundry sands and the ability of trapped gases to escape through the sand.

PHYSICAL PROPERTIES

Those properties familiarly discussed in physics exclusive of those described under mechanical properties; for example, density, electrical conductivity, coefficient of thermal expansion. This term has often been used to describe mechanical properties but this usage is not recommended. See mechanical properties.

PICKLE

Chemical or electrochemical removal of surface oxides.

PIG IRON

Iron produced by reduction of iron ore in the blast furnace.

PINHOLE POROSITY

Very small holes scattered through a casting, possibly by micro-shrinkage or gas evolution during solidification.

PIPE

A cavity formed by contraction in metal (especially ingots) during solidification of the last portion of liquid metal.

PIT

A sharp depression in the surface of metal.

PLASTIC DEFORMATION

Permanent distortion of a material under the action of applied stresses.

PLASTICITY

The ability of a metal to be deformed extensively without rupture.

POISSON'S RATIO

The absolute value of the ratio of the transverse strain to the corresponding axial strain, in a body subjected to uniaxial stress; usually applied to elastic conditions.

POROSITY

Unsoundness caused in cast metals by the presence of blowholes and shrinkage cavities.

POSTHEATING

A process used immediately after welding, whereby heat is applied to the weld zone either for tempering or for providing a controlled rate of cooling, in order to avoid a hard or brittle structure.

PRECIPITATION HARDENING

A process of hardening an alloy in which a constituent precipitates from a supersaturated solid solution. See also age hardening and aging.

PREFERRED ORIENTATION

In a polycrystalline structure, a departure from crystallographic randomness.

PREHEATING

(1) A general term used to describe heating applied as a preliminary to some further thermal or mechanical treatment. (2) A term applied specifically to tool steel to describe a process in which the steel is heated slowly and uniformly to a temperature below the hardening temperature and is then transferred to a furnace in which the temperature is substantially above the preheating temperature.

PRIMARY MILL

A mill for rolling ingots or the rolled products of ingots to blooms, billets or slabs. This type of mill is often called a blooming mill and sometimes a cogging mill.

PROCESS ANNEALING

In the sheet and wire industries, a process by which a ferrous alloy is heated to a temperature close to, but below, the lower limit of the transformation range and is subsequently cooled. This process is applied in order to soften the alloy for further cold working.

PROOF STRESS

In a test, stress that will cause a specified permanent deformation in a material, usually 0.01% or less.

PROPORTIONAL LIMIT

The greatest stress that the material is capable of sustaining without a deviation from the law of proportionality of stress to strain (Hooke's Law).

QUENCH HARDENING

A process of hardening a ferrous alloy of suitable composition by heating within or above the transformation range and cooling at a rate sufficient to increase the hardness substantially. The process usually involves the formation of martensite.

QUENCHING

A process of rapid cooling from an elevated temperature by contact with liquids, gases or solids.

OUENCHING CRACK

A fracture resulting from thermal stresses induced during rapid cooling or quenching; frequently encountered in alloys that have been overheated and liquated and are thus "hot short".

RECRYSTALLIZATION

A process whereby the distorted grain structure of cold worked metals is replaced by a new, strain-free grain structure during annealing above a specific minimum temperature.

RED SHORTNESS

Brittleness in steel when it is red hot.

REDUCTION IN AREA

The difference between the original cross-sectional area and that of the smallest area at the point of rupture; usually stated as a percentage of the original area; also called "contraction of area".

REFINING TEMPERATURE

A temperature, usually just higher than the transformation range, employed in the heat treatment of steel to refine the structure - in particular, the grain size.

RESIDUAL STRESS

Macroscopic stresses that are set up within a metal as the result of non-uniform plastic deformation. This deformation may be caused by cold working or by drastic gradients of temperature from quenching or welding.

RESQUARED

Flat rolled material (plate, sheet or strip) firstly cut to approximate size and finally resheared to very close tolerance: also any material having been cut to equally close tolerances as to dimensions and squareness, by whatever method.

REVERBERATORY FURNACE

A furnace with a shallow hearth, usually non-regenerative, having a roof that deflects the flame and radiates heat toward the hearth or the surface of the charge.

RIMMED STEEL

An incompletely deoxidized steel normally containing less than 0.25% C and having the following characteristics: (a) During solidification an evolution of gas occurs sufficient to maintain a liquid ingot top ("open" steel) until a side and bottom rim of substantial thickness has formed. If the rimming action is intentionally stopped shortly after the mould is filled, the product is termed capped steel. (b) After complete solidification, the ingots consists of two distinct zones - a rim somewhat purer than when poured and a core containing scattered blowholes, a minimum amount of pipe and an average percentage of metalloids somewhat higher than when poured and markedly higher in the upper portion of the ingot.

ROCKWELL HARDNESS TEST

A test for determining the hardness of a material based upon the depth of penetration of a specified penetration into the specimen under certain arbitrarily fixed conditions of test.

ROLLER FLATTENING OR ROLLER LEVELLING

The process in which a series of staggered rolls of small diameter is used to remove bow and waves from sheet. While passing through the rolls, the sheet is bent back and forth slightly and is delivered approximately flat.

ROLLER STRAIGHTENING

A process involving a series of staggered rolls of small diameter, between which rod, tubing and shapes are passed for the purpose of straightening. The process consists of a series of bending operations.

ROLL FORMING

(1) An operation used in forming sheet. Strips of sheet are passed between rolls of definite settings that bend the sheet progressively into structural members of various contours, sometimes called "moulded sections". (2) A process of coiling sheet into open cylinders.

ROLLING

Reducing the cross-sectional area of metal stock, or otherwise shaping metal products, through the use of rotating rolls.

ROLLING MILLS

Machines used to decrease the cross-sectional area of metal stock and produce certain desired shapes as the metal passes between rotating rolls mounted in a framework comprising a basic unit called a stand. Cylindrical rolls produce flat shapes; grooved rolls produce rounds, squares and structural shapes. Among rolling mills may be listed the billet mill, blooming mill, breakdown mill, plate mill, sheet mill, slabbing mill, strip mill and temper mill.

SCAB

(Scabby) A blemish caused on a casting by eruption of gas from the mould face, or by uneven mould surfaces; or occurring where the skin from a blowhole has partly burned away and is not welded.

SCALING

Surface oxidation caused on metals by heating in air or in other oxidizing atmospheres.

SCALLOPS

See "ears".

SCARFING

Cutting surface areas of metal objects, ordinarily by using a gas torch. The operation permits surface defects to be cut from ingots, billets, or the edges of plate that is to be beveled for butt welding. See chipping.

SCLEROSCOPE TEST

A hardness where the loss in kinetic energy of a falling metal "tup", absorbed by indentation upon the impact of the tup on the metal being tested, is indicated by the height of rebound.

SEAM

On the surface of metal, a crack that has been closed but not welded; usually produced by some defect either in casting or in working, such as blowholes that have become oxidized or

folds and laps that have been formed during working. Seam also refers to lap joints, as in seam welding.

SEGREGATION

In an alloy object, concentration of alloying elements at specific regions, usually as a result of the primary crystallization of one phase with the subsequent concentration of other elements in the remaining liquid. Micro segregation refers to normal segregation on a microscopic scale whereby material richer in alloying elements freezes in successive layers on the dendrites (coring) and in the constituent network. Macro segregation refers to gross differences in concentration (for example, from one area of an ingot to another) which may be normal, inverse or gravity segregation.

SEMIKILLED STEEL

Steel incompletely deoxidized, to permit evolution of sufficient carbon monoxide to offset solidification shrinkage.

SHEARED EDGES

Sheared edge is obtained when rolled edge is removed by rotary slitter or mechanical shear.

SHORTNESS

A form of brittleness in metal. It is designated as "cold", "hot", and "red" to indicate the temperature range in which the brittleness occurs.

SINGLE-STAND MILL

A rolling mill of such design that the product contacts only two rolls at a given moment. Contrast with "tandem mill".

SINKHEAD OR HOT TOP

A reservoir insulated to retain heat and to hold excess molten metal on top of an ingot mold, in order to feed the shrinkage of the ingot. Also called "shrink head" or "feeder head".

SINTERING

(1) The bonding of adjacent surfaces of particles in a mass of metal powders or a compact, by heating. (2) A shaped body composed of metal powders and produced by sintering with or without prior compacting.

SKELP

A plate of steel or wrought iron from which pipe or tubing is made by rolling the skelp into shape longitudinally and welding the edges together.

SKIN

A thin surface layer that is different from the main mass of a metal object, in composition, structure or other characteristics.

SLAB

See bloom.

SLAG

A nonmetallic product resulting from the mutual dissolution of flux and nonmetallic impurities in smelting and refining operations.

SOAKING

Prolonged heating of a metal at a selected temperature.

SPHEROIDIZING

Any process of heating and cooling that produces a rounded or globular form of carbide in steel. Spheroidizing methods frequently used are: (1) Prolonged holding a temperature just below Ae1. (2) Heating and cooling alternately between temperatures that are just above and just below Ae1. (3) Heating to a temperature above Ae1. or Ae3. and then cooling very slowly in the furnace, or holding at a temperature just below Ae1. (4) Cooling at a suitable rate from the minimum temperature at which all carbide is dissolved, to prevent the re-formation of a carbide network, and then reheating in accordance with method 1 or 2 above (applicable to hypereutectoid steel containing a carbide network).

STEEL

An iron base alloy, malleable in some temperature range as initially cast, containing manganese, usually carbon, and often other alloying elements. In carbon steel and low-alloy steel, the maximum carbon is about 2.0%; in high-alloy steel, about 2.5%. The dividing line between low-alloy and high-alloy steels is generally regarded as being about 5% metallic alloying elements. Steel is to be differentiated from two general classes of "irons": the cast irons, on the high-carbon side, and the relatively pure irons such as ingot iron, carbonyl iron, and electrolytic iron, on the low-carbon side. In some steels containing extremely low carbon, the manganese content is the principal differentiating factor, steel usually containing at least 0.25%; ingot iron contains considerably less.

STRAIGHTNESS

Measure of adherence to or deviation from a straight line, normally expressed as sweep or camber, according to the plane.

STRAIN AGING

Aging induced by cold working. See aging.

STRAIN ENERGY

(1) The work done in deforming a body. (2) The work done in deforming a body within the elastic limit of the material. It is more properly elastic strain energy and can be recovered as work rather than heat.

STRAIN HARDENING

An increase in hardness and strength caused by plastic deformation at temperatures lower than the recrystallization range.

STRESS

The load per unit of area. Ordinarily stress-strain curves do not show the true stress (load divided by area at that moment) but a fictitious value obtained by using the original area.

STRESS-CORROSION CRACKING

Failure by cracking under combined action of corrosion and stress, either external (applied) or internal (residual). Cracking may be either intergranular or transgranular, depending on metal and corrosive medium.

STRESS RAISERS

Factors such as sharp changes in contour or surface defects, which concentrate stresses locally.

STRESS RELIEVING

A process of reducing residual stresses in a metal object by heating the object to a suitable temperature and holding for a sufficient time. This treatment may be applied to relieve stresses induced by casting, quenching, normalizing, machining, cold working, or welding.

STRETCHER FLATTENING OR STRETCHER LEVELLING

A process for removing bow and warpage from sheet by applying a uniform tension at the ends so that the piece is elongated to a definite amount of permanent set.

STRETCHER LEVELLED FLATNESS

Steel sheets or strip subjected to stretcher levelling thereby acquire a high degree of flatness (together with some increase of stiffness). When the same degree of flatness is procured by other methods like roller levelling, it is then described as "stretcher levelled standard of flatness".

STRETCHER STRAINS

See "Lüder lines".

SWEEP

Curvature in structural and other similar shapes normal to the plane of the web.

TANDEM MILL

A rolling mill consisting of two or more stands arranged so that the metal being processed travels in a straight line from stand to stand. In continuous rolling, the various stands are synchronized so that the strip may be rolled in all stands simultaneously. Contrast with "single-stand mill".

TEMPER

A measure of the mechanical characteristics of cold rolled steel strip obtained by various degrees of cold working.

TEMPERING

A process of reheating quench-hardened or normalized steel to a temperature below the transformation range, and then cooling at any rate desired.

TEMPER BRITTLENESS

Brittleness that results when certain steels are held within, or are cooled slowly through, a certain range of temperature below the transformation range. The brittleness is revealed by notched bar impact tests at room temperature or lower temperatures.

TEMPER ROLLING

This is a skin-rolling of steel sheet or strip when cold, to impart a required degree of stiffness, hardness or surface condition. It should not be confused with "cold rolling" which implies cold reduction on terms of thickness.

TENSILE STRENGTH

The value obtained by dividing the maximum load observed during tensile straining by the specimen cross-sectional area before straining. Also called "ultimate strength".

THERMAL FATIGUE

Fracture resulting from the presence of temperature gradients which vary with time in such a manner as to produce cyclic stresses in a structure.

TOLERANCES

Allowable variations from specified dimensions.

TOUGHNESS

Property of absorbing considerable energy before fracture; usually represented by the area under a stress-strain curve, and therefore involving both ductility and strength.

TRACE

Extremely small quantity of an element, usually too small to determine quantitatively.

TRANSFORMATION RANGE OR TRANSFORMATION TEMPERATURE RANGE

The temperature interval within which austenite forms while ferrous alloys are being heated. Also the temperature interval within which austenite disappears while ferrous alloys are being cooled. The two ranges are distinct, sometimes overlapping but never coinciding. The limiting temperatures of the ranges depend on the composition of the alloy and on the rate of change of temperature, particularly during cooling. See transformation temperature.

TRANSFORMATION TEMPERATURE

The temperature at which a change in phase occurs. The term is sometimes used to denote the limiting temperature of a transformation range. The following symbols are used for iron and steel:

- Ac₁ The temperature at which austenite begins to form during heating.
- Ac₃ The temperature at which transformation of ferrite to austenite is completed during heating. AcCM In hypereutectoid steel, the temperature at which solution of cementite in austenite is completed during heating.
- Ar₁ The temperature at which transformation of austenite to ferrite or to ferrite plus cementite is completed during cooling.
- Ar₃ The temperature at which austenite begins to transform to ferrite during cooling.
- Ar_{CM} In hypereutectoid steel, the temperature at which solution of cementite in austenite is completed during heating.
- A₄ The temperature at which austenite transforms to delta ferrite during heating; the reverse process occurs during cooling.
- M_s (or Ar") The temperature at which transformation of austenite to martensite starts during cooling.
- M_f The temperature at which transformation of austenite to martensite is completed during cooling.
- Note: All these changes (except the formation of martensite) occur at lower temperatures during cooling than during heating, and depend on the rate of change of temperature. The temperatures of phase changes at equilibrium are denoted by the symbols Ae1 Ae3 AeCM and Ae4.

TRANSVERSE

Literally "across" signifying a direction or plane perpendicular to the direction of working.

ULTIMATE STRENGTH

See tensile strength.

UNIVERSAL MILL

A rolling mill in which rolls with a vertical axis roll the edges of the metal stock between some of the passes through the horizontal rolls.

UNIVERSAL MILL PLATE

Plate rolled on a universal mill having vertical (edge) rolls as well as horizontal rolls; also any plate having characteristics identical to plate produced on a universal mill.

UPSETTING

(1) A metal working operation similar to forging. (2) The process of axial flow under axial compression of metal, as in forming heads on rivets by flattening the end of wire.

VICKERS HARDNESS TEST

Same as a "diamond pyramid hardness test".

WELDING

A process used to join metals by the application of heat. Fusion welding, which includes gas, arc, and resistance welding, requires that the parent metals be melted. This distinguishes fusion welding from brazing. In pressure welding joining is accomplished by the use of heat and pressure without melting. The parts that are being welded are pressed together and heated simultaneously, so that recrystallization occurs across the interface.

WOODY FRACTURE

Fractures having a fibrous appearance.

YIELD POINT

In mild or medium-carbon steel, the stress at which a marked increase in deformation occurs without increase in load. In other steels, and in nonferrous metals this phenomenon is not observed. See Yield Strength.

YIELD STRENGTH

The stress at which a material exhibits a specified limiting deviation from proportionality of stress to strain. An offset of 0.2% is used for many metals such as aluminum-base and magnesium-base alloys, while a 0.5% total elongation under load is frequently used for copper alloys.

YOUNG'S STRENGTH

The modulus of elasticity in tension or compression.

SECTION 3. SERVICES

Services Overview

Saw Cutting

We have an extensive range of fully automated that saws that can handle a cutting range of **up to 32" diameter**. Our experienced operators and service capabilities allow us to offer multiple piece orders and close tolerance cutting available as requested. We are open to custom cutting inquiries as requested - please inquire

Plasma Arc Cutting

Our high definition plasma cutting capabilities can accommodate stainless steel grades from 1875" **up to 2**" **thick** x 96" wide x 240" long. This high production machine has a tight tolerance and gives us the ability to cut squares, rectangles, rounds, rings or most custom profiles. We can process and nest drawings sent to us in PDF, DXF and Solid-works files.

Trepanning

We have an extensive range of automated Trepan Machines that can accommodate round or square stock from 2" to 32" in diameter. Our machines have the capabilities of drilling hole sizes from 1" to 10" ID's and bar lengths from 6" to 22'. We have the expertise of drilling multiple grades of steel, aluminum and cast producing high quality hole finishes.

Plate Saw

Our plate saws can handle $\frac{1}{2}$ " to 12" thick plates **up to 20 ft. long.** Saw cutting produces smoother, straighter squares and rectangles than plasma arc, without a heat affected zone, which reduces insert breakage and enhances machinability.

Delivery Services

Encore Metals offers same or next day delivery on most in-stock items. Delivery is free to local and selected regional locations on qualifying orders. Our team of contracted and commercial delivery services are selected for their reliable, safety-conscious service.

Packaging

Encore Metals' packaging is designed for safe handling as well as product protection and identification. Material is sorted by finish and bundled with appropriate protection. Short, cut pieces are skidded, banded, and shrink-wrapped to your handling capabilities. Sheet products are shipped with protective coverings, and corner and edge protection. Inquire for custom packaging requirements.

QUALITY ASSURANCE

You can count on Encore Metals for materials of the highest quality, all at the best value. As an industry leader, we continue to leverage our experience, new technologies, and progressive ideas to drive our future. At Encore Metals, we realize it takes a lot more than materials to provide these kinds of results - It takes the desire and ability and commitment to make a difference.

We are convinced that successful application of the principles and techniques of quality management result in reduced costs, improved quality, and improved relationships between Encore Metals and our customers. Our customer's satisfaction, quality products, and services will continue to be the expected standard for our future.

Our suppliers are all mills of high repute with facilities that employ the latest steelmaking technology. As a result, our products are backed by the most advanced metallurgical and research facilities available.

Encore Metals maintains an ISO 9001:2008 registered quality assurance program to assure traceability of our products and performance of services dedicated to quality and to the needs of our customers.

A copy of our Quality Assurance Policy is available upon request.